\(\mathsf {SC}^\mathsf{2} \): Satisfiability Checking Meets Symbolic Computation

(Project Paper)
  • Erika Ábrahám
  • John Abbott
  • Bernd Becker
  • Anna M. Bigatti
  • Martin Brain
  • Bruno Buchberger
  • Alessandro Cimatti
  • James H. Davenport
  • Matthew England
  • Pascal Fontaine
  • Stephen Forrest
  • Alberto Griggio
  • Daniel Kroening
  • Werner M. Seiler
  • Thomas Sturm
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9791)

Abstract

Symbolic Computation and Satisfiability Checking are two research areas, both having their individual scientific focus but sharing also common interests in the development, implementation and application of decision procedures for arithmetic theories. Despite their commonalities, the two communities are rather weakly connected. The aim of our newly accepted \(\mathsf {SC}^\mathsf{2} \) project (H2020-FETOPEN-CSA) is to strengthen the connection between these communities by creating common platforms, initiating interaction and exchange, identifying common challenges, and developing a common roadmap from theory along the way to tools and (industrial) applications. In this paper we report on the aims and on the first activities of this project, and formalise some relevant challenges for the unified \(\mathsf {SC}^\mathsf{2} \) community.

Keywords

Logical problems Symbolic computation Computer algebra systems Satisfiability checking Satisfiability modulo theories 

References

  1. 1.
    Abbott, J., Bigatti, A.M., Lagorio, G.: CoCoA-5: a system for doing computations in commutative algebra. http://cocoa.dima.unige.it
  2. 2.
    Ábrahám, E.: Building bridges between symbolic computation and satisfiability checking. In: Proceedings ISSAC 2015, pp. 1–6. ACM (2015)Google Scholar
  3. 3.
    Arai, N.H., Matsuzaki, T., Iwane, H., Anai, H.: Mathematics by machine. In: Proceedings ISSAC 2014, pp. 1–8. ACM (2014)Google Scholar
  4. 4.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: \(\mathtt CVC4\). In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Barrett, C., Kroening, D., Melham, T.: Problem solving for the 21st century: efficient solvers for satisfiability modulo theories. Technical report 3, London Mathematical Society and Smith Institute for Industrial Mathematics and System Engineering, Knowledge Transfer Report (2014). http://www.cs.nyu.edu/~barrett/pubs/BKM14.pdf
  6. 6.
    Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, Chap. 26, vol. 185, pp. 825–885. IOS Press, Amsterdam (2009)Google Scholar
  7. 7.
    Barrett, C., Stump, A., Tinelli, C.: The satisfiability modulo theories library (SMT-LIB) (2010). www.SMT-LIB.org
  8. 8.
    Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)MATHGoogle Scholar
  9. 9.
    Bixby, R.E.: Computational progress in linear and mixed integer programming. In: Presentation at ICIAM 2015 (2015)Google Scholar
  10. 10.
    Bobot, F., Conchon, S., Contejean, E., Iguernelala, M., Mahboubi, A., Mebsout, A., Melquiond, G.: A simplex-based extension of Fourier-Motzkin for solving linear integer arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 67–81. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Borralleras, C., Lucas, S., Navarro-Marset, R., Rodríguez-Carbonell, E., Rubio, A.: Solving non-linear polynomial arithmetic via SAT modulo linear arithmetic. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 294–305. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Bosma, W., Cannon, J., Playoust, C.: The MAGMA algebra system I: the user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational Algebra and Number Theory (London, 1993). http://dx.doi.org/10.1006/jsco.1996.0125 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Bouton, T., Caminha, D., de Oliveira, B., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 151–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson, D.: Truth table invariant cylindrical algebraic decomposition by regular chains. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 44–58. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.: Truth table invariant cylindrical algebraic decomposition. J. Symbol. Comput. 76, 1–35 (2016)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited. In: Felty, A.P., Middeldorp, A. (eds.) CADE-25. LNCS, vol. 9195, pp. 623–637. Springer International Publishing, Switzerland (2015)CrossRefGoogle Scholar
  17. 17.
    Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bull. 37(4), 97–108 (2003)CrossRefMATHGoogle Scholar
  18. 18.
    Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylindrical algebraic decomposition. In: Proceedings ISSAC 2007, pp. 54–60. ACM (2007)Google Scholar
  19. 19.
    Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT2 solver. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Buchberger, B.: Ein Algorithmus zum Auffinden des basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Ph.D. thesis, University of Innsbruck (1965). English translation: J. Symbolic Computation 41, 475–511 (2006)Google Scholar
  21. 21.
    Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic decomposition via triangular decomposition. In: Proceedings ISSAC 2009, pp. 95–102. ACM (2009)Google Scholar
  22. 22.
    Cimatti, A., Griggio, A., Schaafsma, B., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Codish, M., Fekete, Y., Fuhs, C., Giesl, J., Waldmann, J.: Exotic semi-ring constraints. In: Proceedings SMT 2013. EPiC Series, vol. 20, pp. 88–97. EasyChair (2013)Google Scholar
  24. 24.
    Collins, G.E.: The SAC-1 system: an introduction and survey. In: Proceedings SYMSAC 1971, pp. 144–152. ACM (1971)Google Scholar
  25. 25.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)Google Scholar
  26. 26.
    Conchon, S., Iguernelala, M., Mebsout, A.: A collaborative framework for non-linear integer arithmetic reasoning in Alt-Ergo. In: Proceedings SYNASC 2013, pp. 161–168. IEEE (2013)Google Scholar
  27. 27.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings STOC 1971, pp. 151–158. ACM (1971). http://doi.acm.org/10.1145/800157.805047
  28. 28.
    Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: An open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Switzerland (2015)CrossRefGoogle Scholar
  29. 29.
    Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symbol. Comput. 5, 29–35 (1988)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397 (1962)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-0-2 – A computer algebra system for polynomial computations (2015). http://www.singular.uni-kl.de
  33. 33.
    Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM SIGSAM Bull. 31(2), 2–9 (1997)CrossRefGoogle Scholar
  34. 34.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Eraşcu, M., Hong, H.: Synthesis of optimal numerical algorithms using real quantifier elimination (Case study: Square root computation). In: Proceedings ISSAC 2014, pp. 162–169. ACM (2014)Google Scholar
  36. 36.
    Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. J. Satisfiability Boolean Model. Comput. 1(3–4), 209–236 (2007)MATHGoogle Scholar
  37. 37.
    Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
  38. 38.
    Hearn, A.C.: REDUCE: The first forty years. In: Proceedings A3L, pp. 19–24. Books on Demand GmbH (2005)Google Scholar
  39. 39.
    Jenks, R.D., Sutor, R.S.: AXIOM: The Scientific Computation System. Springer, New York (1992)MATHGoogle Scholar
  40. 40.
    Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS(LNAI), vol. 7364, pp. 339–354. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  41. 41.
    Kahrimanian, H.G.: Analytic differentiation by a digital computer. Master’s thesis, Temple University Philadelphia (1953)Google Scholar
  42. 42.
    Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic Point of View. Springer, New York (2008)MATHGoogle Scholar
  43. 43.
  44. 44.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48, 506–521 (1999)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Martin, W.A., Fateman, R.J.: The Macsyma system. In: Proceedings SYMSAC 1971, pp. 59–75. ACM (1971)Google Scholar
  46. 46.
    Moses, J.: Symbolic integration. Ph.D. thesis, MIT & MAC TR-47 (1967)Google Scholar
  47. 47.
    de Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 15–44. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  48. 48.
    de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  49. 49.
    Nelson, G., Oppen, D.C.: Simplifications by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979)CrossRefMATHGoogle Scholar
  50. 50.
    Nolan, J.: Analytic differentiation on a digital computer. Master’s thesis, MIT (1953)Google Scholar
  51. 51.
    Platzer, A., Quesel, J.-D., Rümmer, P.: Real world verification. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 485–501. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  52. 52.
    Risch, R.H.: The problem of integration in finite terms. Trans. Am. Math. Soc. 139, 167–189 (1969)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the SMT solver iSAT. In: Proceedings MBMV 2013, pp. 231–241. Institut für Angewandte Mikroelektronik und Datentechnik, Fakultät für Informatik und Elektrotechnik, Universität Rostock (2013)Google Scholar
  54. 54.
    Slagle, J.: A heuristic program that solves symbolic integration problems in freshman calculus. Ph.D. thesis, Harvard University (1961)Google Scholar
  55. 55.
    Strzeboński, A.: Solving polynomial systems over semialgebraic sets represented by cylindrical algebraic formulas. In: Proceedings ISSAC 2012, pp. 335–342. ACM (2012)Google Scholar
  56. 56.
    Weispfenning, V.: Comprehensive Gröbner bases. J. Symbol. Comput. 14(1), 1–29 (1992)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)MathSciNetCrossRefMATHGoogle Scholar
  58. 58.
    Wolfram Research, Inc.: Mathematica, version 10.4. Wolfram Research, Inc., Champaign, Illinois (2016)Google Scholar
  59. 59.
    Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 481–500. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Erika Ábrahám
    • 1
  • John Abbott
    • 12
  • Bernd Becker
    • 2
  • Anna M. Bigatti
    • 3
  • Martin Brain
    • 11
  • Bruno Buchberger
    • 4
  • Alessandro Cimatti
    • 5
  • James H. Davenport
    • 6
  • Matthew England
    • 7
  • Pascal Fontaine
    • 9
  • Stephen Forrest
    • 10
  • Alberto Griggio
    • 5
  • Daniel Kroening
    • 11
  • Werner M. Seiler
    • 12
  • Thomas Sturm
    • 8
    • 13
  1. 1.RWTH Aachen UniversityAachenGermany
  2. 2.Albert-Ludwigs-UniversitätFreiburgGermany
  3. 3.Università Degli Studi di GenovaGenovaItaly
  4. 4.Johannes Kepler UniversitätLinzAustria
  5. 5.Fondazione Bruno KesslerTrentoItaly
  6. 6.University of BathBathUK
  7. 7.Coventry UniversityCoventryUK
  8. 8.CNRS, LORIA, InriaNancyFrance
  9. 9.LORIA, InriaUniversité de LorraineNancyFrance
  10. 10.Maplesoft Europe Ltd.AachenGermany
  11. 11.University of OxfordOxfordUK
  12. 12.Universität KasselKasselGermany
  13. 13.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations