Advertisement

Definition and Design of Hypoallergenic Foods

  • V. MahlerEmail author
  • R. E. Goodman
Chapter

Abstract

The most common food allergies in adults are to plant foods (nuts, legumes, fruits, and vegetables) and a few animal products (milk, eggs, crustacean shellfish, and fish muscle). Eliminating relevant allergens (specific proteins) in specific plants represents a new approach to allergen avoidance for the prevention of sensitization and elicitation of food allergies. A variety of methods have been used to date with varying success in proof-of-concept investigations to develop hypoallergenic foods. This chapter provides an overview of the current status of hypoallergenic foods produced in model allergenic plants (rice, soy, apple, tomato, carrot, peanut). Perspectives and challenges are discussed. However, marketing of hypoallergenic foods produced from genetically modified crops is currently not feasible as these varieties would have to be accurately differentiated from unmodified, fully allergenic varieties.

Keywords

Genetically Modify Food Allergy Genetically Modify Food Genetically Modify Plant Oral Food Challenge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

DBPCFC

Double-blind placebo-controlled food challenge

dsRNA

Double-stranded RNA

EAST

Enzyme allergosorbent test

EFSA

European Food Safety Authority

ELISA

Enzyme-linked immunosorbent assay

GenTG

Deutsches Gentechnikgesetz German Genetic Engineering Act

GM

Genetically modified

GMO

Genetically modified organisms

HA

Hypoallergenic

HPLC

High-performance liquid chromatography

hpRNA

Hairpin RNA

IgE

Immunoglobulin E

LOAEL

Lowest observed adverse effect level

LTP

Lipid transfer protein

mRNA

Messenger RNA

nsLTP

Nonspecific lipid transfer protein

NTWG

New Techniques Working Group

PR-10

Pathogenesis-related protein family 10

PTGS

Posttranscriptional gene silencing

RNA

Ribonucleic acid

RNAi

RNA interference

RNase

Ribonuclease

RT-PCR

Reverse transcriptase-polymerase chain reaction

siRNA

Short interfering RNA

SIT

Specific immunotherapy

TALEN

Transcription activator-like effector nucleases

TILLING

Targeting induced local lesions in genomes

UDP

Uridine diphosphate

WT

Wild type

ZKBS

German Central Commission for Biological Safety (Zentrale Kommission für die Biologische Sicherheit)

References

  1. Allergome, The Platform of Allergen Knowledge, editor. www.allergome.org/script/search_step1.php?clear=1. accessed 30 Nov 2014.
  2. American Academy of Pediatrics Committee on Nutrition, editor. Clinical testing of hypoallergenic formulas. Pediatrics. 2000;106:346–9.Google Scholar
  3. Asero R, Mistrello G, Roncarolo D, de Vries SC, Gautier MF, Ciurana CL, et al. Lipid-transfer protein: a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion. Int Arch Allergy Immunol. 2000;122:20–32.CrossRefPubMedGoogle Scholar
  4. Asero R, Jimeno L, Barber D. Component-resolved diagnosis of plant food allergy by SPT. Eur Ann Allergy Clin Immunol. 2008;40:115–21.PubMedGoogle Scholar
  5. Asero R, Tripodi S, Dondi A, et al. Prevalence and clinical relevance of IgE sensitization to profilin in childhood: a multicenter study. Int Arch Allergy Immunol. 2015;168:25–31.CrossRefPubMedGoogle Scholar
  6. Ballmer-Weber BK, Hoffmann-Sommergruber K. Update: molecular diagnostics of allergies to vegetables and fruits. Allergo J Int. 2014;23:24–34.CrossRefGoogle Scholar
  7. Bässler OY, Weiss J, Wienkoop S, Lehmann K, Scheler C, Dölle S, et al. Evidence for novel tomato seed allergens: IgE-reactive legumin and vicilin proteins identified by multidimensional protein fractionation-mass spectrometry and in silico epitope modeling. J Proteome Res. 2009;8:1111–22.CrossRefPubMedGoogle Scholar
  8. Beyer K. Hypoallergenicity: a principle for the treatment of food allergy. In: Cooke RJ, Vandenplas Y, Wahn U, editors. Nutrition support for infants and children at risk. 59th Nestlé Nutrition Workshop, Pediatric Program, Berlin 2006. Basel: Karger; 2007. p. 37–47.Google Scholar
  9. Bolhaar ST, Zuidmeer L, Ma Y, Ferreira F, Bruijnzeel-Koomen CA, Hoffmann-Sommergruber K, et al. A mutant of the major apple allergen, Mal d 1, demonstrating hypo-allergenicity in the target organ by double-blind placebo-controlled food challenge. Clin Exp Allergy. 2005;35:1638–44.CrossRefPubMedGoogle Scholar
  10. Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Zentrale Kommission für die Biologische Sicherheit (ZKBS), editors. Stellungnahme der ZKBS zu neuen Techniken für die Pflanzenzüchtung. Az.: 402.45310.0104; Juni 2012. www.keine-gentechnik.de/fileadmin/pics/Informationsdienst/ZKBS_Neue_Techniken_Pflanzenzuechtung_D_2012.pdf.
  11. Burney P, Summers C, Chinn S, Hooper R, van Ree R, Lidholm J. Prevalence and distribution of sensitization to foods in the European Community Respiratory Health Survey: a EuroPrevall analysis. Allergy. 2010;65:1182–8.PubMedGoogle Scholar
  12. Chapman MD. Allergen nomenclature. In: Lockey RF, Ledford DK, editors. Allergens and allergen immunotherapy. 4th ed. New York: Informa Healthcare; 2008. p. 47–58.Google Scholar
  13. Chu Y, Faustinelli P, Ramos ML, Hajduch M, Stevenson S, Thelen JJ, et al. Reduction of IgE binding and nonpromotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut. J Agric Food Chem. 2008;56:11225–33.CrossRefPubMedGoogle Scholar
  14. Chung SY, Reed S. Reducing food allergy: is there promise for food applications? Curr Pharm Des. 2014;20:924–30.CrossRefPubMedGoogle Scholar
  15. Codex Alimentarius Commission. Alinorm 03/34: Joint FAO/WHO Food Standard Programme, 25th Session, Rome; 2003. Appendix III, Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants; Appendix IV, Annex on the assessment of possible allergenicity, p. 47–60.Google Scholar
  16. Dodo HW, Konan KN, Chen FC, Egnin M, Viquez OM. Alleviating peanut allergy using genetic engineering: the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnol J. 2008;6:135–45.CrossRefPubMedGoogle Scholar
  17. Dubois AE, Pagliarani G, Brouwer RM, Kollen BJ, Dragsted LO, Eriksen FD, Callesen O, Gilissen LJ, Krens FA, Visser RG, Smulders MJ, Vlieg-Boerstra BJ, Flokstra-de Blok BJ, van de Weg WE. First successful reduction of clinical allergenicity of food by genetic modification: Mal d 1-silenced apples cause fewer allergy symptoms than the wild-type cultivar. Allergy. 2015;70:1406–12.CrossRefPubMedGoogle Scholar
  18. EFSA Panel on Genetically Modified Organisms (GMO Panel), editor. Scientific opinion on the assessment of allergenicity of GM plants and microorganisms and derived food and feed. EFSA J. 2010;8:1700.Google Scholar
  19. Fagard M, Vaucheret H. (Trans)gene silencing in plants: how many mechanisms? Annu Rev Plant Physiol Plant Mol Biol. 2000;51:167–94.CrossRefPubMedGoogle Scholar
  20. Foetisch K, Son AY, Altmann F, Aulepp H, Conti A, Haustein D, Vieths S. Tomato (Lycopersicon esculentum) allergens in pollen-allergic patients. Eur Food Res Technol. 2001;213:259–66.CrossRefGoogle Scholar
  21. Foetisch K, Scheurer S, Vieths S, Hanschmann KM, Lidholm J, Mahler V. Identification of allergen-resolved threshold doses of carrot (Daucus carota) by means of oral challenge and ELISA. J Allergy Clin Immunol. 2013;131:1711–3.CrossRefPubMedGoogle Scholar
  22. Fritsché R. Utility of animal models for evaluating hypoallergenicity. Mol Nutr Food Res. 2009;53:979–83.CrossRefPubMedGoogle Scholar
  23. Gallo M, Sayre R. Removing allergens and reducing toxins from food crops. Curr Opin Biotechnol. 2009;20:191–6.CrossRefPubMedGoogle Scholar
  24. Gilissen LJWJ, Bolhaar STHP, Matos CI, Rouwendal GJA, Boone MJ, Krens FA, et al. Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol. 2005;115:364–9.CrossRefPubMedGoogle Scholar
  25. Gilissen LJWJ, Bolhaar STHP, Knulst AC, Zuidmeeri L, van Ree R, Gao ZS, et al. Production of hypoallergenic plant foods by selection, breeding and genetic modification. In: Gilissen LJEJ, Wichers HJ, Savelkoul HFJ, Bogers RJ, editors. Allergy matters: new approaches to allergy prevention and management. Heidelberg: Springer; 2006. p. 95–105.CrossRefGoogle Scholar
  26. Goodman RE, Vieths S, Sampson HA, Hill D, Ebisawa M, Taylor SL, van Ree R. Allergenicity assessment of genetically modified crops – what makes sense? Nat Biotechnol. 2008;26:73–81.CrossRefPubMedGoogle Scholar
  27. Hauser M, Wallner M, Ferreira F, Mahler V, Kleine-Tebbe J. Das Konzept der Pollen-Panallergene: Profiline und Polcalcine. Allergo J. 2012;21:291–3.CrossRefGoogle Scholar
  28. Hazebrouck S, Guillon B, Drumare MF, Paty E, Wal JM, Bernard H. Trypsin resistance of the major peanut allergen Ara h 6 and allergenicity of the digestion products are abolished after selective disruption of disulfide bonds. Mol Nutr Food Res. 2012;56:548–57.CrossRefPubMedGoogle Scholar
  29. Hebert CG, Valdes JJ, Bentley WE. Beyond silencing engineering applications of RNA interference and antisense technology for altering cellular phenotype. Curr Opin Biotechnol. 2008;19:500–5.CrossRefPubMedGoogle Scholar
  30. Herman EM, Helm RM, Jung R, Kinney AJ. Genetic modification removes an immunodominant allergen from soybean. Plant Physiol. 2003;132:36–43.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hoffmann-Sommergruber K, SAFE Consortium, editors. The SAFE project: ‘plant food allergies: field to table strategies for reducing their incidence in Europe’ an EC-funded study. Allergy. 2015;60:436–42.Google Scholar
  32. Holzhauser T, Wackermann O, Ballmer-Weber BK, Bindslev-Jensen C, Scibilia J, Perono-Garoffo L, Utsumi S, Pousen KL, Vieths S. Soybean (Glycine max) allergy in Europe: Gly m 5 (beta-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J Allergy Clin Immunol. 2009;123:452–8.CrossRefPubMedGoogle Scholar
  33. Hompes S, Scherer K, Köhli A, Rueff F, Mahler V, Lange L, et al. Nahrungsmittel-Anaphylaxie: Daten aus dem Anaphylaxie-Register. Allergo J. 2010;19:234–42.CrossRefGoogle Scholar
  34. International Union of Immunological Societies (IUIS) Allergen Nomenclature Sub-Committee, editor. Allergen nomenclature. 2014. www.allergen.org/index.php. Zugegriffen 30 Nov 2014.
  35. King N, Helm R, Stanley JS, Vieths S, Lüttkopf D, Hatahet L, et al. Allergenic characteristics of a modified peanut allergen. Mol Nutr Food Res. 2005;49:963–71.CrossRefPubMedGoogle Scholar
  36. Kleine-Tebbe J, Ballmer-Weber B, Breiteneder H, Vieths S. Bet v 1 und Homologe – Verursacher der Baumpollenallergie und birkenpollenassoziierter Kreuzreaktionen. Allergo J. 2010;19:462–3.Google Scholar
  37. Kondo Y, Urisu A, Tokuda R. Identification and characterization of the allergens in the tomato fruit by immunoblotting. Int Arch Allergy Immunol. 2001;126:294–9.CrossRefPubMedGoogle Scholar
  38. Krath BN, Eriksen FD, Pedersen BH, Gilissen LJWJ, van der Weg WE, Dragsted LO. Development of hypo-allergenic apples: silencing of the major allergen Mal d 1 gene in ‘Elstar’ apple and the effect of grafting. J Hortic Sci Biotechnol. 2009;ISAFRUIT Special Issue:52–7.Google Scholar
  39. Ladics GS. Current codex guidelines for assessment of potential protein allergenicity. Food Chem Toxicol. 2008;46 Suppl 10:S20–3.CrossRefPubMedGoogle Scholar
  40. Le LQ, Mahler V, Lorenz Y, Scheurer S, Biemelt S, Vieths S, Sonnewald U. Reduced allergenicity of tomato fruits harvested from Lyc e 1-silenced transgenic tomato plants. J Allergy Clin Immunol. 2006a;118:1176–83.CrossRefPubMedGoogle Scholar
  41. Le LQ, Lorenz Y, Scheurer S, Fotisch K, Enrique E, Bartra J, et al. Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3) expression. Plant Biotechnol J. 2006b;4:231–42.CrossRefPubMedGoogle Scholar
  42. Le LQ, Mahler V, Scheurer S, Foetisch K, Braun Y, Weigand D. Yeast profilin complements profilin deficiency in transgenic tomato fruits and allows development of hypoallergenic tomato fruits. FASEB J. 2010;24:4939–47.CrossRefPubMedGoogle Scholar
  43. López-Matas MÁ, Larramendi CH, Ferrer A, Huertas AJ, Pagán JA, García-Abujeta JL, et al. Identification and quantification of tomato allergens: in vitro characterization of six different varieties. Ann Allergy Asthma Immunol. 2011;106:230–8.CrossRefPubMedGoogle Scholar
  44. Lorenz Y, Enrique E, Lequynh L, Fötisch K, Retzek M, Biemelt S, et al. Skin prick tests reveal stable and heritable reduction of allergenic potency of gene-silenced tomato fruits. J Allergy Clin Immunol. 2006;118:711–8.CrossRefPubMedGoogle Scholar
  45. McCallum CM, Comai L, Greene EA, Henikoff S. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol. 2000;123:439–42.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Miles S, Bolhaar S, Gonzalez-Mancebo E, Hafner C, Hoffmann-Sommergruber K, Fernandez-Rivas M, Knulst A. Attitudes towards low allergen food in food allergic consumers. Nutr Food Sci. 2005;35:220–8.CrossRefGoogle Scholar
  47. Morbitzer R, Römer P, Boch J, Lahaye T. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A. 2010;107:21617–22.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Muraro A, Dreborg S, Halken S, Høst A, Niggemann B, Aalberse R, et al. Dietary prevention of allergic diseases in infants and small children. Part I: immunologic background and criteria for hypoallergenicity. Pediatr Allergy Immunol. 2004;15:103–11.CrossRefPubMedGoogle Scholar
  49. Muraro A, Werfel T, Hoffmann-Sommergruber K, Roberts G, Beyer K, Bindslev-Jensen C, et al. EAACI food allergy and anaphylaxis guidelines: diagnosis and management of food allergy. Allergy. 2014;69:1008–25.Google Scholar
  50. Neudecker P, Lehmann K, Nerkamp J, Haase T, Wangorsch A, Fötisch K, et al. Mutational epitope analysis of Pru av 1 and Api g 1, the major allergens of cherry (Prunus avium) and celery (Apium graveolens): correlating IgE reactivity with three-dimensional structure. Biochem J. 2003;376(Pt 1):97–107.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nusrat A, Datta SK, Datta K. RNA interference in designing transgenic crops. GM Crops. 2010;1:207–13.CrossRefGoogle Scholar
  52. Ofori-Anti AO, Ariyarathna H, Chen L, Lee HL, Pramod SN, Goodman RE. Establishing objective detection limits for the pepsin digestion assay used in the assessment of genetically modified foods. Regul Toxicol Pharmacol. 2008;52(2):94–103.CrossRefPubMedGoogle Scholar
  53. Ogawa T, Bando N, Tsuji H, Okajima H, Nishikawa K, Sasaoka K. Investigation of the IgE-binding proteins in soybeans by immunoblotting with the sera of the soybean-sensitive patients with atopic dermatitis. J Nutr Sci Vitaminol. 1991;37:555–65.CrossRefPubMedGoogle Scholar
  54. Palacín A, Gómez-Casado C, Rivas LA, Aguirre J, Tordesillas L, Bartra J, et al. Graph based study of allergen cross-reactivity of plant lipid transfer proteins (LTPs) using microarray in a multicenter study. PLoS One. 2012;7:e50799.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Paulus KE. Molekulare Ansätze zur Reduktion des allergenen Potenzials von Tomatenfrüchten. Dissertation an der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg; 2012.Google Scholar
  56. Paulus KE, Mahler V, Pabst M, Kogel KH, Altmann F, Sonnewald U. Silencing β1,2-xylosyltransferase in transgenic tomato fruits reveals xylose as constitutive component of Ige-binding epitopes. Front Plant Sci. 2011;2:42.Google Scholar
  57. Peters S, Imani J, Mahler V, Foetisch K, Kaul S, Paulus KE, et al. Dau c 1.01 and Dau c 1.02-silenced transgenic carrot plants show reduced allergenicity to patients with carrot allergy. Transgenic Res. 2011;20:547–56.CrossRefPubMedGoogle Scholar
  58. Petersen A, Scheurer S. Stabile pflanzliche Nahrungsmittelallergene: lipid-transfer-proteine. Allergo J. 2011;20:384–6.CrossRefGoogle Scholar
  59. Plant AL, Cohen A, Moses MS, Bray EA. Nucleotide sequence and spatial expression pattern of a drought- and abscisic acid-induced gene of tomato. Plant Physiol. 1991;97:900–6.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pons L, Palmer K, Burks W. Towards immunotherapy for peanut allergy. Curr Opin Allergy Clin Immunol. 2005;5:558–62.PubMedGoogle Scholar
  61. Pravettoni V, Primavesi L, Farioli L, Brenna OV, Pompei C, Conti A, et al. Tomato allergy: detection of IgE-binding lipid transfer proteins in tomato derivatives and in fresh tomato peel, pulp, and seeds. J Agric Food Chem. 2009;57:10749–54.CrossRefPubMedGoogle Scholar
  62. Radauer C, Breiteneder H. Evolutionary biology of plant food allergens. J Allergy Clin Immunol. 2007;120:518–25.CrossRefPubMedGoogle Scholar
  63. Radauer C, Kleine-Tebbe J, Beyer K. Stabile pflanzliche Nahrungsmittelallergene: Speicherproteine. Allergo J. 2012;21:155–8.CrossRefGoogle Scholar
  64. Radauer C, Nandy A, Ferreira F, Goodman RE, Larsen JN, Lidholm J, et al. Update of the WHO/IUIS Allergen Nomenclature Database based on analysis of allergen sequences. Allergy. 2014;69:413–9.CrossRefPubMedGoogle Scholar
  65. Ring J, Beyer K, Biedermann T, Bircher A, Duda D, Fischer J, et al. Akuttherapie und Management der Anaphylaxie. Allergo J Int. 2014;23:96–112.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Scheurer S, Sonnewald S. Genetic engineering of plant food with reduced allergenicity. Front Biosci. 2009;14:59–71.Google Scholar
  67. Schmidt-Andersen MB, Hall S, Dragsted LO. Identification of European allergy patterns to the allergen families PR-10, LTP, and profilin from Rosaceae fruits. Clin Rev Allergy Immunol. 2011;41:4–19.CrossRefGoogle Scholar
  68. Sicherer SH. Epidemiology of food allergy. J Allergy Clin Immunol. 2011;127:594–602.CrossRefPubMedGoogle Scholar
  69. Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM. Total silencing by intron-spliced hairpin RNAs. Nature. 2000;407:319–20.Google Scholar
  70. Song Y, Cui C, Zhu H, Li Q, Zhao F, Jin Y. Expression, purification and characterization of zinc-finger nucleases to knockout the goat beta-lactoglobulin gene. Protein Expr Purif. 2015;112:1–7.CrossRefPubMedGoogle Scholar
  71. Stevenson SE, Chu Y, Ozias-Akins P, Thelen JJ. Validation of gelfree, label-free quantitative proteomics approaches: applications for seed allergen profiling. J Proteomics. 2009;72:555–66.Google Scholar
  72. Tada Y, Nakase M, Adachi T, Nakamura R, Shimada H, Takahashi M, et al. Reduction of 14–16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Lett. 1996;391:341–5.CrossRefPubMedGoogle Scholar
  73. Taylor SL, Hefle SL. Food allergies and other food sensitivities. A publication of the Institute of Food Technologists’ Expert Panel on Food Safety and Nutrition. Food Technol. 2001;55:68–83.Google Scholar
  74. Trcka J, Schad SG, Scheurer S, Conti A, Vieths S, Gross G, Trautmann A. Rice-induced anaphylaxis: IgE-mediated allergy against a 56-kDa glycoprotein. Int Arch Allergy Immunol. 2012;158:9–17.CrossRefPubMedGoogle Scholar
  75. Wakasa Y, Hirano K, Urisu A, Matsuda T, Takaiwa F. Generation of transgenic rice lines with reduced contents of multiple potential allergens using a null mutant in combination with an RNA silencing method. Plant Cell Physiol. 2011;52:2190–9.CrossRefPubMedGoogle Scholar
  76. Wangorsch A, Weigand D, Peters S, Mahler V, Fötisch K, Reuter A, et al. Identification of a Dau c PRPlike protein (Dau c 1.03) as a new allergenic isoform in carrots (cultivar Rodelika). Clin Exp Allergy. 2012;42:156–66.CrossRefPubMedGoogle Scholar
  77. Wangorsch A, Jamin A, Foetisch K, Malczyk A, Reuter A, Vierecke S, et al. Identification of Sola l 4 as Bet v 1 homologous pathogenesis related-10 allergen in tomato fruits. Mol Nutr Food Res. 2014;59:582–92.Google Scholar
  78. Welter S, Lehmann K, Dölle S, Schwarz D, Weckwerth W, Scheler C, et al. Identification of putative new tomato allergens and differential interaction with IgEs of tomato allergic subjects. Clin Exp Allergy. 2013a;43:1419–27.CrossRefPubMedGoogle Scholar
  79. Welter S, Dölle S, Lehmann K, Schwarz D, Weckwerth W, Worm M, Franken P. Pepino mosaic virus infection of tomato affects allergen expression, but not the allergenic potential of fruits. PLoS One. 2013b;8:e65116.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, et al. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 2001;27:581–90.CrossRefPubMedGoogle Scholar
  81. Westphal S, Kolarich D, Foetisch K, Lauer I, Altmann F, Conti A, et al. Molecular characterization and allergenic activity of Lyc e 2 (beta-fructofuranosidase), a glycosylated allergen of tomato. Eur J Biochem. 2003;270:1327–37.CrossRefPubMedGoogle Scholar
  82. Westphal S, Kempf W, Foetisch K, Retzek M, Vieths S, Scheurer S. Tomato profilin Lyc e 1: IgE cross-reactivity and allergenic potency. Allergy. 2004;59:526–32.CrossRefPubMedGoogle Scholar
  83. Wiche R, Gubesch M, König H, Fötisch K, Hoffmann A, Wangorsch A, et al. Molecular basis of pollen-related food allergy: Identification of a second cross-reactive IgE epitope on Pru av 1, the major cherry allergen. Biochem J. 2005;385:319–27.CrossRefPubMedGoogle Scholar
  84. Willerroider M, Fuchs H, Ballmer-Weber BK, Focke M, Susani M, Thalhamer J, et al. Cloning and molecular and immunological characterisation of two new food allergens, Cap a 2 and Lyc e 1, profilins from bell pepper (Capsicum annuum) and tomato (Lycopersicon esculentum). Int Arch Allergy Immunol. 2003;131:245–55.CrossRefPubMedGoogle Scholar
  85. Worm M, Eckermann O, Dölle S, Aberer W, Beyer K, Hawranek T, et al. Auslöser und Therapie der Anaphylaxie: Auswertung von mehr als 4000 Fällen aus Deutschland, Österreich und der Schweiz. Dtsch Arztebl Int. 2014;111:367–75.PubMedPubMedCentralGoogle Scholar
  86. Worm M, Reese I, Ballmer-Weber B, et al. Guidelines on the management of IgE-mediated food allergies: S2k-Guidelines of the German Society for Allergology and Clinical Immunology (DGAKI) in collaboration with other German Medical Societies including the Association of the Scientific Medical Societies in Germany (AWMF). Allergo J Int. 2015;24:256–293.Google Scholar
  87. Zhang J, Hua ZC. Targeted gene silencing by small interfering RNA-based knock-down technology. Curr Pharm Biotechnol. 2004;5:1–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of DermatologyUniversity Hospital Erlangen, Friedrich-Alexander-University Erlangen-NurembergErlangenGermany
  2. 2.AllergologyPaul-Ehrlich Institute, Federal Institute for Vaccines and BiomedicinesLangenGermany
  3. 3.Department of Food Science & TechnologyUniversity of NebraskaLincolnUSA

Personalised recommendations