Normal Forms for Operators via Gröbner Bases in Tensor Algebras

  • Jamal Hossein Poor
  • Clemens G. Raab
  • Georg Regensburger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9725)

Abstract

We propose a general algorithmic approach to noncommutative operator algebras generated by linear operators using quotients of tensor algebras. In order to work with reduction systems in tensor algebras, Bergman’s setting provides a tensor analog of Gröbner bases. We discuss a modification of Bergman’s setting that allows for smaller reduction systems and tends to make computations more efficient. Verification of the confluence criterion based on S-polynomials has been implemented as a Mathematica package. Our implementation can also be used for computer-assisted construction of Gröbner bases starting from basic identities of operators. We illustrate our approach and the software using differential and integro-differential operators as examples.

Keywords

Operator algebra Tensor algebra Noncommutative Gröbner basis Reduction systems 

References

  1. 1.
    Bergman, G.M.: The diamond lemma for ring theory. Adv. Math. 29, 178–218 (1978)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bokut, L.A., Chen, Y.: Gröbner-Shirshov bases and their calculation. Bull. Math. Sci. 4, 325–395 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Buchberger, B.: An algorithm for finding the bases elements of the residue class ring modulo a zero dimensional polynomial ideal (German). Ph.D. thesis, University of Innsbruck (1965)Google Scholar
  4. 4.
    Gómez-Torrecillas, J.: Basic module theory over non-commutative rings with computational aspects of operator algebras. In: Barkatou, M., Cluzeau, T., Regensburger, G., Rosenkranz, M. (eds.) AADIOS 2012. LNCS, vol. 8372, pp. 23–82. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Guo, L., Regensburger, G., Rosenkranz, M.: On integro-differential algebras. J. Pure Appl. Algebra 218, 456–473 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Hossein Poor, J., Raab, C.G., Regensburger, G.: Algorithmic operator algebras via normal forms for tensors. In: Proceedings of ISSAC 2016, p.8. ACM, New York (2016, to appear)Google Scholar
  7. 7.
    Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. Computational Problems in Abstract Algebra, pp. 263–297. Pergamon, Oxford (1970)Google Scholar
  8. 8.
    Rosenkranz, M.: A new symbolic method for solving linear two-point boundary value problems on the level of operators. J. Symbolic Comput. 39, 171–199 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J. Symbolic Comput. 43, 515–544 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Regensburger, G., Tec, L., Buchberger, B.: Symbolic analysis for boundary problems: from rewriting to parametrized Gröbner bases. Numerical and Symbolic Scientific Computing, pp. 273–331. Springer, Vienna (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jamal Hossein Poor
    • 1
  • Clemens G. Raab
    • 1
  • Georg Regensburger
    • 1
  1. 1.Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of SciencesLinzAustria

Personalised recommendations