Automating Free Logic in Isabelle/HOL

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9725)

Abstract

We present an interactive and automated theorem prover for free higher-order logic. Our implementation on top of the Isabelle/HOL framework utilizes a semantic embedding of free logic in classical higher-order logic. The capabilities of our tool are demonstrated with first experiments in category theory.

Keywords

Free logic Interactive and automated theorem proving Model finding Application to category theory 

References

  1. 1.
    Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J., Gabbay, D., Woods, J. (eds.) Handbook of the History of Logic, vol. 9. Logic and Computation, Elsevier (2014)Google Scholar
  2. 2.
    Blanchette, J., Böhme, S., Paulson, L.: Extending sledgehammer with SMT solvers. J. Autom. Reason. 51(1), 109–128 (2013)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Freyd, P.J., Scedrov, A.: Categories, Allegories. North Holland, Amsterdam (1990)MATHGoogle Scholar
  4. 4.
    Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)MATHGoogle Scholar
  5. 5.
    Nolt, J.: Free logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Winter 2014 edn. (2014)Google Scholar
  6. 6.
    Scott, D.: Existence and description in formal logic. In: Schoenman, R., Russell, B. (eds.) Philosopher of the Century, pp. 181–200. George Allen & Unwin, London (1967). Reprinted with additions. In: Lambert, K. (ed.) Philosophical Application of Free Logic, pp. 28–48. Oxford Universitry Press, 1991Google Scholar
  7. 7.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)MathSciNetMATHGoogle Scholar
  8. 8.
    Wenzel, M.: The isabelle system manual, February 2016. https://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2016/doc/system.pdf
  9. 9.
    Wisniewski, M., Steen, A., Benzmüller, C.: LeoPARD — a generic platform for the implementation of higher-order reasoners. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 325–330. Springer, Heidelberg (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Freie Universität BerlinBerlinGermany
  2. 2.Visiting Scholar at Stanford UniversityStanfordUSA
  3. 3.Visiting Scholar at University of CaliforniaBerkeleyUSA

Personalised recommendations