PolySCIP

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9725)

Abstract

PolySCIP [1] is a new solver for multi-criteria integer and multi-criteria linear programs handling an arbitrary number of objectives. It is available as an official part of the non-commercial constraint integer programming framework SCIP. It utilizes a lifted weight space approach to compute the set of supported extreme non-dominated points and unbounded non-dominated rays, respectively. The algorithmic approach can be summarized as follows: At the beginning an arbitrary non-dominated point is computed (or it is determined that there is none) and a weight space polyhedron created. In every next iteration a vertex of the weight space polyhedron is selected whose entries give rise to a single-objective optimization problem via a combination of the original objectives. If the optimization of this single-objective problem yields a new non-dominated point, the weight space polyhedron is updated. Otherwise another vertex of the weight space polyhedron is investigated. The algorithm finishes when all vertices of the weight space polyhedron have been investigated. The file format of PolySCIP is based on the widely used MPS format and allows a simple generation of multi-criteria models via an algebraic modelling language.

Keywords

Multi-criteria optimization Multi-objective optimization Efficient solutions Pareto-optimal solutions Non-dominated points Weight space partition Weight set decomposition 

References

  1. 1.
    PolySCIP website: http://polyscip.zib.de
  2. 2.
  3. 3.
    Ralphs, T., Guzelsoy, M., Mahajan, A.: SYMPHONY Version 5.5 User’s Manual. Lehigh University (2013). https://projects.coin-or.org/SYMPHONY
  4. 4.
    Löhne, A.: Vector Optimization with Infimum and Supremum. Springer, Heidelberg (2011). www.bensolve.org CrossRefMATHGoogle Scholar
  5. 5.
    Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gamrath, G., Fischer, T., Gally, T., et al.: The SCIP Optimization Suite 3.2. ZIB-Report 15–60 (2016)Google Scholar
  7. 7.
    SCIP Optimization Suite. http://scip.zib.de
  8. 8.
    Gurobi Optimization. www.gurobi.com
  9. 9.
  10. 10.
  11. 11.
    CRC (2011) Observation of strains: Sustainable Manufacturing. www.sustainable-manufacturing.net
  12. 12.
    Isermann, H.: Proper efficiency and the linear vector maximum problem. Oper. Res. 22(1), 189–191 (1974)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)MATHGoogle Scholar
  14. 14.
    Benson, H.P., Sun, E.: Outcome space partition of the weight set in multiobjective linear programming. J. Optim. Theory Appl. 105(1), 17–36 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Przybylski, A., Gandibleux, X., Ehrgott, M.: A recursive algorithm for finding all nondominated extreme points in the outcome set of a multiobjective integer programme. INFORMS J. Comput. 22(3), 371–386 (2010)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Özpeynirci, Ö., Köksalan, M.: An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs. Manage. Sci. 56(12), 2302–2315 (2010)CrossRefMATHGoogle Scholar
  17. 17.
    Benson, H.P.: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Global Optim. 13(1), 1–24 (1998)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ehrgott, M., Löhne, A., Shao, L.: A dual variant of Benson’s “outer approximation algorithm” for multiple objective linear programming. J. Global Optim. 52(4), 757–778 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
  20. 20.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Zuse Institute BerlinBerlinGermany
  2. 2.TU BerlinBerlinGermany

Personalised recommendations