Border Basis for Polynomial System Solving and Optimization

  • Philippe Trébuchet
  • Bernard Mourrain
  • Marta Abril Bucero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9725)

Abstract

We describe the software package borderbasix dedicated to the computation of border bases and the solutions of polynomial equations. We present the main ingredients of the border basis algorithm and the other methods implemented in this package: numerical solutions from multiplication matrices, real radical computation, polynomial optimization. The implementation parameterized by the coefficient type and the choice function provides a versatile family of tools for polynomial computation with modular arithmetic, floating point arithmetic or rational arithmetic. It relies on linear algebra solvers for dense and sparse matrices for these various types of coefficients. A connection with SDP solvers has been integrated for the combination of relaxation approaches with border basis computation. Extensive benchmarks on typical polynomial systems are reported, which show the very good performance of the tool.

References

  1. 1.
    Bucero, M.A., Mourrain, B.: Exact relaxation for polynomial optimization on semi-algebraic sets (2013). http://hal.inria.fr/hal-00846977
  2. 2.
    Bucero, M.A., Mourrain, B.: Border basis relaxation for polynomial optimization. J. Symb. Comput. 74, 378–399 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK Users’ Guide. SIAM, Philadelphia (1992). http://www.netlib.org/lapack/ MATHGoogle Scholar
  4. 4.
    Bosma, W., Cannon, J., Playoust, C.: The magma algebra system I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Corless, R.M., Gianni, P.M., Trager, B.M.: A reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots. In: Küchlin, W.W. (ed.) Proceedings of ISSAC, pp. 133–140 (1997)Google Scholar
  6. 6.
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-0-2 – A computer algebra system for polynomial computations (2015). www.singular.uni-kl.de
  7. 7.
    Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Liu, J.W.H., Li, X.S.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20, 720–755 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Faugère, J.-C.: FGb: a library for computing Gröbner bases. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 84–87. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Fujisawa, K., Fukuda, M., Kobayashi, K., Kojima, M., Nakata, K., Nakata, M., Yamashita, M.: SDPA (SemiDefinite Programming Algorithm) (2008)Google Scholar
  10. 10.
    Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, Dordrecht (1999)CrossRefMATHGoogle Scholar
  11. 11.
    Graillat, S., Trébuchet, P.: A new algorithm for computing certified numerical approximations of the roots of a zero-dimensional system. In: ISSAC 2009, pp. 167–173 (2009)Google Scholar
  12. 12.
    Huot, L.: Polynomial systems solving and elliptic curve cryptography. Ph.D. thesis, Université Pierre et Marie Curie (UPMC) (2013)Google Scholar
  13. 13.
    Lasserre, J.-B.: Moments, Positive Polynomials and Their Applications. Imperial College Press, London (2009)CrossRefGoogle Scholar
  14. 14.
    Lasserre, J.-B., Laurent, M., Mourrain, B., Rostalski, P., Trébuchet, P.: Moment matrices, border bases and real radical computation. J. Symb. Comput. 51, 63–85 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Mourrain, B., Trébuchet, P.: Generalized normal forms and polynomials system solving. In: Kauers, M. (ed.) ISSAC 2005, pp. 253–260 (2005)Google Scholar
  17. 17.
    Mourrain, B., Trébuchet, P.: Border basis representation of a general quotient algebra. In: van der Hoeven, J. (ed.) ISSAC 2012, pp. 265–272 (2012)Google Scholar
  18. 18.
    MOSEK ApS. The MOSEK optimization library (2015). www.mosek.com
  19. 19.
    Ottaviani, G., Spaenlehauer, P.-J., Sturmfels, B.: Exact solutions in structured low-rank approximation. SIAM J. Matrix Anal. Appl. 35(4), 1521–1542 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Parisse, B.: Giac/XCas, a free computer algebra system. Technical report, University of Grenoble (2008)Google Scholar
  21. 21.
    Trébuchet, P.: A new certified numerical algorithm for solving polynomial systems. In: SCAN 2010, pp. 1–8 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Philippe Trébuchet
    • 1
  • Bernard Mourrain
    • 2
  • Marta Abril Bucero
    • 2
  1. 1.ANSSIParisFrance
  2. 2.Inria Sophia Antipolis Méditerranée, AROMATHValbonneFrance

Personalised recommendations