Common Divisors of Solvable Polynomials in JAS

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9725)

Abstract

We present generic, type safe (non-unique) common divisors of solvable polynomials software. The solvable polynomial rings are defined with non-commuting variables, moreover, in case of parametric (solvable) coefficients the main variables may not commute with the coefficients. The interface, class organization is described in the object-oriented programming environment of the Java Algebra System (JAS). The implemented algorithms can be applied, for example, in solvable extension field and root construction. We show the design and feasibility of the implementation in the mentioned applications.

Keywords

Generic multivariate solvable polynomials Common divisors 

References

  1. 1.
    Apel, J., Klaus, U.: FELIX - an assistant for algebraists. In: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, ISSAC 1991, Bonn, Germany, 15–17 July 1991, pp. 382–389 (1991)Google Scholar
  2. 2.
    Apel, J., Lassner, W.: Computation and simplification in Lie fields. In: EUROCAL 1987, pp. 468–478 (1987)Google Scholar
  3. 3.
    Apel, J., Melenk, H.: NCPOLY: computation in non-commutative polynomial ideals. Technical report (2004). http://www.reduce-algebra.com/docs/ncpoly.pdf
  4. 4.
    Bueso, J.L., Gómez-Torrecillas, J., Verschoren, A.: Algorithmic Methods in Non-Commutative Algebra: Applications to Quantum Groups. Kluwer Academic Publishers, Dordrecht (2003)CrossRefMATHGoogle Scholar
  5. 5.
    Kandri Rody, A., Weispfennning, V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symbol Comput. 9(1), 1–26 (1990)CrossRefMATHGoogle Scholar
  6. 6.
    Kredel, H.: Solvable Polynomial Rings. Dissertation, Universität Passau, Passau (1992)Google Scholar
  7. 7.
    Kredel, H.: On a Java computer algebra system, its performance and applications. Sci. Comput. Program. 70(2–3), 185–207 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kredel, H.: Unique factorization domains in the Java computer algebra system. In: Sturm, T., Zengler, C. (eds.) ADG 2008. LNCS, vol. 6301, pp. 86–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Kredel, H.: Parametric solvable polynomial rings and applications. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2015. LNCS, vol. 9301, pp. 275–291. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  10. 10.
    Kredel, H.: The Java Algebra System (JAS). Technical report, since 2000. http://krum.rz.unimannheim.de/jas/
  11. 11.
    Levandovskyy, V.: Plural, a non–commutative extension of singular: past, present and future. In: Iglesias, A., Takayama, N. (eds.) ICMS 2006. LNCS, vol. 4151, pp. 144–157. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Levandovskyy, V., Schönemann, H.: Plural: a computer algebra system for noncommutative polynomial algebras. In: Proceedings of the Symbolic and Algebraic Computation, International Symposium ISSAC 2003, Philadelphia, USA, pp. 176–183 (2003)Google Scholar
  13. 13.
    Mora, T.: An introduction to commutative and noncommutative Gröbner bases. Theor. Comput. Sci. 134(1), 131–173 (1994)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of MannheimMannheimGermany

Personalised recommendations