Advertisement

Stick(y) Insects — Evaluation of Static Stability for Bio-inspired Leg Coordination in Robotics

  • Jan PaskarbeitEmail author
  • Marc Otto
  • Malte Schilling
  • Axel Schneider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9793)

Abstract

As opposed to insects, todays walking robots are typically not constructed to withstand crashes. Whereas insects use a multitude of sensor information and have self-healing abilities in addition, robots usually rely on few specialized sensors that are essential for operation. If one of the sensors fails due to a crash, the robot is unusable. Therefore, most technical systems require static stability at all times to avoid damages and to guarantee utilizability, whereas insects can afford occasional failures. Despite the failure tolerance, insects also possess adhesive, “sticky” pads and claws at their feet that allow them to cling to the substrate, thus reducing the need for static stability. Nevertheless, insects, in particular stick insects, have been studied intensively to understand the underlying mechanisms of their leg coordination in order to adapt it for the control of robots. This work exemplarily evaluates the static stability of a single stick insect during walking and the stability of a technical system that is controlled by stick insect - inspired coordination rules.

Notes

Acknowledgments

This work has been supported by the DFG Center of Excellence ‘Cognitive Interaction TEChnology’ (CITEC, EXC 277) within the EICCI-project.

References

  1. 1.
    Calvitti, A., Beer, R.D.: Analysis of a distributed model of leg coordination. I. Individual coordination mechanisms. Biol. Cybern. 82(3), 197–206 (2000)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cruse, H.: The function of the legs in the free walking stick insect, Carausius morosus. J. Comp. Physiol. B 112(2), 235–262 (1976)CrossRefGoogle Scholar
  3. 3.
    Dürr, V., Ebeling, W.: The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning. J. Exp. Biol. 208(12), 2237–2252 (2005)CrossRefGoogle Scholar
  4. 4.
    Espenschied, K.S., Quinn, R.D., Beer, R.D., Chiel, H.J.: Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robot. Auton. Syst. 18(1–2), 59–64 (1996)CrossRefGoogle Scholar
  5. 5.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)CrossRefGoogle Scholar
  6. 6.
    Jander, J.: Mechanical stability in stick insects when walking straight and around curves. In: Gewecke, M., Wendler, G. (eds.) Insect Locomotion, pp. 33–42. Paul Parey, Berlin, Hamburg (1985)Google Scholar
  7. 7.
    Kindermann, T.: Positive Rückkopplung zur Kontrolle komplexer Kinematiken am Beispiel des hexapoden Laufens: Experimente und Simulationen. Ph.D. thesis, Universität Bielefeld (2003)Google Scholar
  8. 8.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Moll, K., Roces, F., Federle, W.: How load-carrying ants avoid falling over: mechanical stability during foraging in Atta vollenweideri grass-cutting ants. PLoS ONE 8(1), e52816 (2013)CrossRefGoogle Scholar
  10. 10.
    Paskarbeit, J., Schilling, M., Schmitz, J., Schneider, A.: Obstacle crossing of a real, compliant robot based on local evasion movements and averaging of stance heights using singular value decomposition. In: IEEE International Conference on Robotics and Automation, ICRA 2015, Seattle, WA, USA, 26–30 May 2015, pp. 3140–3145 (2015)Google Scholar
  11. 11.
    Schilling, M., Paskarbeit, J., Schmitz, J., Schneider, A., Cruse, H.: Grounding an internal body model of a hexapod walker - control of curve walking in a biological inspired robot–control of curve walking in a biological inspired robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012, pp. 2762–2768 (2012)Google Scholar
  12. 12.
    Schilling, M., Hoinville, T., Schmitz, J., Cruse, H.: Walknet, a bio-inspired controller for hexapod walking. Biol. Cybern. 107(4), 397–419 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Schilling, M., Paskarbeit, J., Hoinville, T., Hüffmeier, A., Schneider, A., Schmitz, J., Cruse, H.: A hexapod walker using a heterarchical architecture for action selection. Front. Comput. Neurosci. 7 (2013)Google Scholar
  14. 14.
    Schumm, M., Cruse, H.: Control of swing movement: influences of differently shaped substrate. J. Comp. Physiol. A 192(10), 1147–1164 (2006)CrossRefGoogle Scholar
  15. 15.
    Theunissen, L., Bekemeier, H., Dürr, V.: Stick insect locomotion (2014). toolkit.cit-ec.uni-bielefeld.de/datasets/stick-insect-locomotion-data
  16. 16.
    Theunissen, L.M., et al.: A natural movement database for management, documentation, visualization, mining and modeling of locomotion experiments. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 308–319. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Zill, S.N., Schmitz, J., Büschges, A.: Load sensing and control of posture and locomotion. Arthropod Struct. Dev. 33(3), 273–286 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jan Paskarbeit
    • 1
    Email author
  • Marc Otto
    • 2
  • Malte Schilling
    • 3
  • Axel Schneider
    • 1
    • 4
  1. 1.Biomechatronics Group, Center of Excellence ‘Cognitive Interaction Technology’ (CITEC)University of BielefeldBielefeldGermany
  2. 2.Robotics Research Group, Faculty of Mathematics and Computer ScienceUniversity of BremenBremenGermany
  3. 3.Neuroinformatics Group, Center of Excellence ‘Cognitive Interaction Technology’ (CITEC)University of BielefeldBielefeldGermany
  4. 4.Embedded Systems and Biomechatronics Group, Faculty of Engineering and MathematicsUniversity of Applied SciencesBielefeldGermany

Personalised recommendations