Advertisement

Soft Suppression of Traveling Localized Vibrations in Medium-Length Thin Sandwich-Like Cylindrical Shells Containing Magnetorheological Layers via Nonstationary Magnetic Field

  • Gennadi MikhasevEmail author
  • Ihnat Mlechka
  • Holm Altenbach
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 182)

Abstract

A medium length thin laminated cylindrical shell composed by embedding magnetorheological elastomers (MREs) between elastic layers is the subject of this investigation. Physical properties of MREs are assumed to be functions of the magnetic field induction. Differential equations with complex coefficients depending upon the magnetic field and based on experimental data for MREs are used as the governing ones. The shell is subjected to perturbations in their surface so that the initial displacements and velocities are localized in a neighborhood of some generatrix. The problem is to study the response of the MRE-based shell to the initial localized perturbations and the applied time-dependent magnetic field. The asymptotic solution of the initial boundary value problem for the governing equations is constructed by superimposing families of localized bending waves running in the circumferential direction. It is shown that applying the time-dependent magnetic field result in soft suppression of running waves.

Keywords

Wave Packet Cylindrical Shell Applied Magnetic Field Elastic Layer Sandwich Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement PIRSES-GA-2013-610547-TAMER.

References

  1. 1.
    Bica, I.: The influence of the magnetic field on the elastic properties of anisotropic magnetorheological elastomers. J. Industr. Eng. Chemist. 18, 1666–1669 (2012)CrossRefGoogle Scholar
  2. 2.
    Boczkowska, A., Awietjan, S.F., Pietrzko, S., Kurzydlowski, K.J.: Mechanical properties of magnetorheological elastomers under shear deformation. Composites: Part B 43, 636–640 (2012)CrossRefGoogle Scholar
  3. 3.
    Deng, H.-X., Gong, X.-L.: Application of magnetorheological elastomer to vibration absorber. Commun. Nonlinear Sci. Numer. Simul. 13, 1938–1947 (2008)CrossRefGoogle Scholar
  4. 4.
    Farshad, M., Benine, A.: Magnetoactive elastomer composites. Polym. Test. 23, 347–353 (2004)CrossRefGoogle Scholar
  5. 5.
    Fuchs, A., Shang, Q., Elkins J., Gordaninejad, F., Evrensel, C.: Development and characterization of magnetorheological elastomers. J. App.l Polym. Sci. 105, 2497508 (2007)Google Scholar
  6. 6.
    Gibson, R.F.: A review of recent research on mechanics of multifunctional composite materials and structures. Compos. Struct. 92, 2793–2810 (2010)Google Scholar
  7. 7.
    Grigolyuk, E.I., Kulikov, G.M.: Multilayer Reinforced Shells: Calculation of Pneumatic Tires (in Russian). Mashinostroenie, Moscow (1988)Google Scholar
  8. 8.
    Korobko, E.V, Zhurauski, M.A., Novikova, Z.A., Kuzmin, V.A.: Rheological properties of magnetoelectrorheological fluids with complex disperse phase. J. Phys.: Conf. Ser. 149, 12–65 (2009)Google Scholar
  9. 9.
    Korobko, E.V, Mikhasev, G.I., Novikova, Z.A., Zurauski, M.A.: On damping vibrations of three-layered beam containing magnetorheological elastomer. J. Intell. Mater. Syst. Struct. 23(9), 1019–1023 (2012)CrossRefGoogle Scholar
  10. 10.
    Mikhasev, G.I.: Low-frequency free vibrations of viscoelastic cylindrical shells. Int. Appl. Mech. 28 (9), 586–590 (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Mikhasev, G.I.: Localized families of bending waves in a non-circular cylindrical shell with sloping edges. J. Appl. Math. Mech. 60 4, 629–637 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Mikhasev, G.I.: Free and parametric vibrations of cylindrical shells under static and periodic axial loads. Technische Mechanik 17, 209–216 (1997)Google Scholar
  13. 13.
    Mikhasev, G.I.: Localized families of bending waves in a thin medium-length cylindrical shell under pressure. J. Sound Vib. 253(4), 833–857 (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Mikhasev, G.I., Tovstik, P.E.: Localized Vibrations and Waves in Thin Shells. Asymptotic Methods (in Russ.). FIZMATLIT, Moscow (2009)Google Scholar
  15. 15.
    Mikhasev, G.I., Botogova, M.G., Korobko, E.V.: Theory of thin adaptive laminated shells based on magnetorheological materials and its application in problems on vibration suppression. In: Altenbach, H., Eremeyev, V.A. (eds.) Shell-like Structures. Advanced Structured Materials. Volume 15, pp. 727–750. Springer, Berlin (2011)Google Scholar
  16. 16.
    Mikhasev, G.I., Altenbach, H., Korchevskaya, E.A.: On the influence of the magnetic field on the eigenmodes of thin laminated cylindrical shells containing magnetorheological elastomer. Compos. Struct. 113, 186–196 (2014)CrossRefGoogle Scholar
  17. 17.
    Qatu, M.S.: Vibration of laminated shells and plates. Elsevier. San Diego (2004)zbMATHGoogle Scholar
  18. 18.
    Qatu, M.S., Sullivan, R.W, Wang, W.: Recent research advances on the dynamic analysis of composite shells: 2000–2009. Compos. Struct. 93, 14–31 (2010)CrossRefGoogle Scholar
  19. 19.
    Reddy, J.N.: Mechanics of laminated composite plates and shells: theory and analysis. 2nd ed. CRC Press, Florida (2003)Google Scholar
  20. 20.
    Tovstik, P.E.: Two-dimensional problems of buckling and vibrations of the shells of zero gaussian curvature. Soviet Phys. Dokl. 28(7), 593–594 (1983)zbMATHGoogle Scholar
  21. 21.
    White, J.L., Choi, D.D.: Polyolefins: processing, structure, development, and properties. Carl Hanser Verlag, Munich (2005)Google Scholar
  22. 22.
    Yalcintas, M., Dai, H.: Vibration suppresion capabilities of magnetorheological materials based adaptive structures. Smart. Mater. Struct. 13, 1–11 (2004)CrossRefGoogle Scholar
  23. 23.
    Yeh, J.-Y.: Vibration and damping analysis of orthotropic cylindrical shells with electrorheological core layer. Aerospace Sci. Technol. 15, 293–303 (2011)CrossRefGoogle Scholar
  24. 24.
    Zhou, G.Y.: Complex shear modulus of a magnetorheological elastomer. Smart. Mater. and Struct. 13, 1203–1210 (2004)CrossRefGoogle Scholar
  25. 25.
    Zhou, G.Y., Wang, Q.: Magnetorheological elastomer-based smart sandwich beams with nonconductive skins. Smart. Mater. Struct. 14, 1001–1009 (2005)CrossRefGoogle Scholar
  26. 26.
    Zhou, G.Y., Wang, Q.: Use of magnetorheological elastomer in an adaptive sandwich beam with conductive skins. Part I: Magnetoelastic loads in conductive skins. Int. J. Solids Struct. 43, 5386–5402 (2006)CrossRefzbMATHGoogle Scholar
  27. 27.
    Zhou, G.Y., Wang, Q.: Use of magnetorheological elastomer in an adaptive sandwich beam with conductive skins. Part II: Dynamic properties. Int. J. Solids Struct. 43, 5403–5420 (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gennadi Mikhasev
    • 1
    Email author
  • Ihnat Mlechka
    • 1
  • Holm Altenbach
    • 2
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.Otto-von-Guericke-Universität MagdeburgUniversitätsplatz 2MagdeburgGermany

Personalised recommendations