Advertisement

The Mixed Alkali Effect Examined by Molecular Dynamics Simulations

  • Junko Habasaki
  • Carlos León
  • K. L. Ngai
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 132)

Abstract

When more than one kind of mobile ions are mixed in ionic conducting glasses, crystals and melts, there is non-linear decrease of conductivity or diffusivity, which can be as large as several orders of magnitude compared with the transport coefficient of either kind of ions. What is a cause of such a large effect? The phenomenon is known as mixed mobile ion effect or Mixed Alkali Effect (MAE) [1–4]. MAE is also known as common properties for ionic conductors including fast ion conductors such as β”-aluminum systems [5] and is considered as a key feature of the common physics governing the dynamics. Molecular dynamics simulation is useful to study the complex ion dynamics giving rise to the MAE in ionically conducting glasses. Many researchers tackled this problem for a long time and it was called as “permanent challenge” [6] during nearly over one century. The problem is still unsolved in the sense that “ a common view among researchers has not established yet”, although many features have become clearer in recent years. The experimental aspects of MAE are covered in details in Sect. 4.8. The difficulty of the problem is to solve all the following properties and features consistently.

Keywords

Fractal Dimension Cooperative Motion Reverse Monte Carlo Mixed Alkali Internal Friction Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.O. Isard, J. Non-Cryst. Solids 1, 235 (1969)CrossRefGoogle Scholar
  2. 2.
    D.E. Day, J. Non-Cryst. Solids 21, 343 (1976)CrossRefGoogle Scholar
  3. 3.
    M.D. Ingram, Phys. Chem. Glasses 28, 215 (1987)Google Scholar
  4. 4.
    M.D. Ingram, Ber. Glass Sci. Technol. 67, 15 (1994)Google Scholar
  5. 5.
    G.V. Chandrashekhar, L.M. Foster, Solid State Commun. 27, 269 (1978)CrossRefGoogle Scholar
  6. 6.
    G. Tomandl, H.A. Schaeffer, J. Non-Cryst. Solids 73, 179 (1985)CrossRefGoogle Scholar
  7. 7.
    C.T. Moynihan, N.S. Saad, D.C. Tran, A.V. Lesikar, J. Am. Ceram. Soc. 63, 458 (1980)CrossRefGoogle Scholar
  8. 8.
    K.L. Ngai, Y. Wang, C.T. Moynihan, J. Non-Cryst. Solids 307–310, 999 (2002)CrossRefGoogle Scholar
  9. 9.
    P. Maass, R. Peibst, J. Non-Cryst. Solids 352, 42 (2006)CrossRefGoogle Scholar
  10. 10.
    R. Peibst, S. Schott, P. Maass, Phys. Rev. Lett. 95, 115901 (2005)CrossRefGoogle Scholar
  11. 11.
    H. Jain, X. Lu, J. Non-Cryst. Solids 196, 285 (1996)CrossRefGoogle Scholar
  12. 12.
    H. Jain, N.L. Peterson, H.L. Downing, J. Non-Cryst. Solids 55, 283 (1983)CrossRefGoogle Scholar
  13. 13.
    R. Terai, H. Wakabayashi, H. Hamanaka, J. Non-Cryst. Solids 103, 137 (1988)CrossRefGoogle Scholar
  14. 14.
    B. Vessal, G.N. Greaves, P.T. Marten, A.V. Chadwick, R. Mole, S. Houde-Walter, Nature 356, 504 (1992)CrossRefGoogle Scholar
  15. 15.
    S. Balasubramanian, K.J. Rao, J. Phys. Chem. 97, 8835 (1993)CrossRefGoogle Scholar
  16. 16.
    S. Balasubramanian, K.J. Rao, J. Non-Cryst. Solids 181, 157 (1995)CrossRefGoogle Scholar
  17. 17.
    J. Habasaki, I. Okada, Y. Hiwatari, J. Non-Cryst. Solids 183, 12 (1995)CrossRefGoogle Scholar
  18. 18.
    J. Habasaki, I. Okada, Y. Hiwatari, J. Non-Cryst. Solids 208, 181 (1996)CrossRefGoogle Scholar
  19. 19.
    J. Horbach, W. Kob, K. Binder, C.A. Angell, Phys. Rev. E54, R5897 (1996)Google Scholar
  20. 20.
    H. Lammert, A. Heuer, Phys. Rev. B72, 214202 (2005)CrossRefGoogle Scholar
  21. 21.
    J. Habasaki, K.L. Ngai, Phys. Chem. Chem. Phys. 9, 4673 (2007)CrossRefGoogle Scholar
  22. 22.
    T.L. Gilbert, J. Chem. Phys. 49, 2640 (1968)CrossRefGoogle Scholar
  23. 23.
    Y. Ida, Phys. Earth Planet Inter. 13, 97 (1976)CrossRefGoogle Scholar
  24. 24.
    J. Habasaki, I. Okada, Mol. Simul. 9, 319 (1992)CrossRefGoogle Scholar
  25. 25.
    L. Van Hove, Phys. Rev. 95, 249 (1954)CrossRefGoogle Scholar
  26. 26.
    A. Hall, J. Swenson, S. Adams, C. Meneghini, Phys. Rev. Lett. 101, 195901 (2008)CrossRefGoogle Scholar
  27. 27.
    R.D. Shannon, C.T. Prewitt, Acta Cryst B25, 925 (1969)CrossRefGoogle Scholar
  28. 28.
    R.D. Shannon, Acta Cryst A32, 751 (1976)CrossRefGoogle Scholar
  29. 29.
    J. Habasaki, K.L. Ngai, J. Chem. Phys. 122, 214725 (2005)CrossRefGoogle Scholar
  30. 30.
    J. Habasaki, AIP Conf. Proc. 1518, 170 (2013)CrossRefGoogle Scholar
  31. 31.
    J. Habasaki, Y. Hiwatari, Phys. Rev. B69, 144207 (2004)CrossRefGoogle Scholar
  32. 32.
    J. Habasaki, I. Okada, Y. Hiwatari, Mat. Res. Soc. Symp. Proc. 455, 91 (1996)CrossRefGoogle Scholar
  33. 33.
    S. Alexander, R. Orbach, J. Phys. Lett. 43, L625 (1982)CrossRefGoogle Scholar
  34. 34.
    J. Habasaki, K.L. Ngai, Y. Hiwatari, J. Chem. Phys. 120, 8195 (2004)CrossRefGoogle Scholar
  35. 35.
    D. ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000)Google Scholar
  36. 36.
    J. Habasaki, Y. Hiwatari, J. Non-Cryst. Solids 307–310, 930 (2002)CrossRefGoogle Scholar
  37. 37.
    J. Habasaki, Y. Hiwatari, Phys. Rev. E 59, 6962 (1999)CrossRefGoogle Scholar
  38. 38.
    J. Habasaki, I. Okada, Y. Hiwatari, Phys. Rev. B 55, 6309 (1997)CrossRefGoogle Scholar
  39. 39.
    R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957)CrossRefGoogle Scholar
  40. 40.
    T. Odagaki, M. Lax, Phys. Rev. B24, 5284 (1981)CrossRefGoogle Scholar
  41. 41.
    J. Habasaki, K.L. Ngai, Y. Hiwatari, Phys. Rev. E65, 021604 (2002)Google Scholar
  42. 42.
    Y. Haven, B. Verkerk, Phys. Chem. Glasses 6, 38 (1965)Google Scholar
  43. 43.
    R. Terai, J. Non-Cryst. Solids 6, 121 (1971)CrossRefGoogle Scholar
  44. 44.
    B. Hafskjold, X. Li, J. Phys.: Condens. Matter 7, 2949 (1995)Google Scholar
  45. 45.
    J. Habasaki, K.L. Ngai, Y. Hiwatari, C.T. Moynihan, J. Non-Cryst. Solids 349, 223 (2004)CrossRefGoogle Scholar
  46. 46.
    A. Heuer, M. Kunow, M. Vogel, R.D. Banhatti, Phys. Chem. Chem. Phys. 4, 3185 (2002)CrossRefGoogle Scholar
  47. 47.
    S. Voss, S.V. Divinski, A.W. Imre, H. Mehrer, J.N. Mundy, Solid State Ionics 176, 1383 (2005)CrossRefGoogle Scholar
  48. 48.
    J. Habasaki, K.L. Ngai, Y. Hiwatari, J. Chem. Phys. 121, 925 (2004)CrossRefGoogle Scholar
  49. 49.
    J. Habasaki, Y. Hiwatari, Phys. Rev. E 62, 8790 (2000)CrossRefGoogle Scholar
  50. 50.
    P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 52, 277 (2000)CrossRefGoogle Scholar
  51. 51.
    K.L. Ngai, Philos. Mag. B 82, 291 (2002)CrossRefGoogle Scholar
  52. 52.
    K.L. Ngai, Relaxation and Diffusion in Complex Systems (Springer, New York, 2011)CrossRefGoogle Scholar
  53. 53.
    M. Ozawa, W. Kob, A. Ikeda, K. Miyazaki, Proc. Natl. Acad. Sci. 112, 6914 (2015)CrossRefGoogle Scholar
  54. 54.
    J. Habasaki, Y. Hiwatari, Phys. Rev. E58, 5111 (1998)Google Scholar
  55. 55.
    W.G. LaCourse, J. Non-Cryst. Solids 95&96, 905 (1987)CrossRefGoogle Scholar
  56. 56.
    M.I. Ingram, B. Roling, J. Phys. Condens. Matter 15, S1595 (2003)CrossRefGoogle Scholar
  57. 57.
    J.E. Shelby Jr., D.E. Day, J. Am. Ceram. Soc. 52, 169 (1969)CrossRefGoogle Scholar
  58. 58.
    J. Habasaki, I. Okada, Y. Hiwatari, in Transport and Dynamical Correlations in Glassy States and the Liquid-Glass Transition of Li 2 SiO 3, ed. by F. Yonezawa. Molecular Dynamics Simulations, Springer Series in Solid State Science, vol. 103 (Springer, Berlin, 1992), pp. 98–108Google Scholar
  59. 59.
    E. Sunyer, P. Jund, R. Jullien, J. Phys.: Condens. Matter 15, L431 (2003)Google Scholar
  60. 60.
    F.H. Stillinger, T.A. Weber, Phys. Rev. A25, 978 (1982)CrossRefGoogle Scholar
  61. 61.
    J. Swenson, S. Adams, Phys. Rev. Lett. 90, 155507 (2003)CrossRefGoogle Scholar
  62. 62.
    S. Adams, J. Swenson, Phys. Rev. Lett. 84, 4144 (2000)CrossRefGoogle Scholar
  63. 63.
    S. Adams, J. Swenson, Phys. Chem. Chem. Phys. 4, 3179 (2002)CrossRefGoogle Scholar
  64. 64.
    C.R. Mueller, V. Kathrirachchi, M. Schuch, P. Maass, G. Petkov, Phys. Chem. Chem. Phys. 12, 10444 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Junko Habasaki
    • 1
  • Carlos León
    • 2
  • K. L. Ngai
    • 3
  1. 1.Tokyo Institute of TechnologyYokohamaJapan
  2. 2.Facultad de FisicaUniversidad Complutense MadridMadridSpain
  3. 3.IPCFCNRPisaItaly

Personalised recommendations