Advertisement

Who, Where, When and with Whom? Evaluation of Group Meeting Visualizations

  • Simone Kriglstein
  • Johanna Haider
  • Günter Wallner
  • Margit Pohl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9781)

Abstract

Visualizing time-dependent and location-based data is a challenging problem but highly relevant for areas like intelligence analysis, traffic control, or social network analysis. In this context, we address the problem of visualizing meetings between persons, groups of persons, vehicles, or other entities. However, the temporal dimension inherent in such data makes traditional map representations less well suited for this kind of problem as they easily become cluttered. To overcome this issue we developed a modified map representation and three alternative representations (two matrix-based visualizations and one based on Gantt charts). An empirical evaluation comparing these four visualizations and assessing correctness, recognition rates of groups, and subjective preference indicates that the alternative visualizations perform significantly better than the map-based representation when meetings need to be identified. In addition, we identify specific strengths and weaknesses of the investigated visualizations and propose design considerations.

Keywords

Information visualization Map Matrix Gantt charts 

Notes

Acknowledgments

The research leading to these results in the VALCRI project has received funding from the European Union 7th Framework Programme (FP7/2007-2013) under grant agreement no FP7-IP- 608142, to Middlesex University and Partners. Simone Kriglstein was supported by CVAST (funded by the Austrian Federal Ministry of Science, Research, and Economy in the exceptional Laura Bassi Centres of Excellence initiative, project nr: 822746).

References

  1. 1.
    Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of Time-Oriented Data. Springer, London (2011)CrossRefGoogle Scholar
  2. 2.
    Andrienko, G., Andrienko, N., Hurter, C., Rinzivillo, S., Wrobel, S.: Scalable analysis of movement data for extracting and exploring significant places. IEEE Trans. Vis. Comput. Graph. 19(7), 1078–1094 (2013)CrossRefGoogle Scholar
  3. 3.
    Andrienko, G., Andrienko, N., Mladenov, M., Mock, M., Pölitz, C.: Discovering bits of place histories from people’s activity traces. In: Proceedings of the VAST 2010, pp. 59–66. IEEE (2010)Google Scholar
  4. 4.
    Boba Santos, R.: Crime Analysis With Crime Mapping, 3rd edn. SAGE Publications, Thousand Oaks (2013)Google Scholar
  5. 5.
    Chorley, M.J., Whitaker, R.M., Allen, S.M.: Personality and location-based social networks. Comput. Hum. Behav. 46, 45–56 (2015)CrossRefGoogle Scholar
  6. 6.
    Ghoniem, M., Fekete, J.D., Castagliola, P.: A comparison of the readability of graphs using node-link and matrix-based representations. In: Proceedings of the INFOVIS 2004, pp. 17–24. IEEE (2004)Google Scholar
  7. 7.
    Gleicher, M., Albers, D., Walker, R., Jusufi, I., Hansen, C.D., Roberts, J.C.: Visual comparison for information visualization. Inf. Vis. 10(4), 289–309 (2011)CrossRefGoogle Scholar
  8. 8.
    Guo, D., Chen, J., MacEachren, A.M., Liao, K.: A visualization system for space-time and multivariate patterns (vis-stamp). IEEE Trans. Vis. Comput. Graph. 12(6), 1461–1474 (2006)CrossRefGoogle Scholar
  9. 9.
    Harrower, M., Brewer, C.A.: Colorbrewer.org: an online tool for selecting colour schemes for maps. In: Dodge, M., Kitchin, R., Perkins, C. (eds.) The Map Reader, pp. 261–268. Wiley, Hoboken (2011)CrossRefGoogle Scholar
  10. 10.
    Kessell, A.M., Tversky, B.: Visualizing space, time, and agents: production, performance, and preference. Cogn. Process. 12(1), 43–52 (2011)CrossRefGoogle Scholar
  11. 11.
    Kjellin, A., Pettersson, L.W., Seipel, S., Lind, M.: Evaluating 2D and 3D visualizations of spatiotemporal information. ACM Trans. Appl. Percept. 7(3), 19:1–19:23 (2008)Google Scholar
  12. 12.
    Kraak, M.J.: The space-time cube revisited from a geovisualization perspective. In: Proceedings of the ICC 2003. The International Cartographic (2003)Google Scholar
  13. 13.
    Kriglstein, S., Pohl, M., Smuc, M.: Pep up your time machine: recommendations for the design of information visualizations of time-dependent data. In: Huang, W. (ed.) Handbook of Human Centric Visualization, pp. 203–225. Springer, New York (2014)CrossRefGoogle Scholar
  14. 14.
    Kristensson, P.O., Dahlback, N., Anundi, D., Bjornstad, M., Gillberg, H., Haraldsson, J., Martensson, I., Nordvall, M., Stahl, J.: An evaluation of space time cube representation of spatiotemporal patterns. IEEE Trans. Vis. Comput. Graph. 15(4), 696–702 (2009)CrossRefGoogle Scholar
  15. 15.
    Li, N., Chen, G.: Analysis of a location-based social network. In: Proceedings of the CSE 2004, pp. 263–270. IEEE (2009)Google Scholar
  16. 16.
    Luz, S., Masoodian, M.: Comparing static gantt and mosaic charts for visualization of task schedules. In: Proceedings of the IV 2011, pp. 182–187. IEEE (2011)Google Scholar
  17. 17.
    MacEachren, A.M.: How Maps Work - Representation, Visualization, and Design. Guilford Press, New York (2004)Google Scholar
  18. 18.
    Orellana, D., Wachowicz, M., Andrienko, N., Andrienko, G.: Uncovering interaction patterns in mobile outdoor gaming. In: Proceedings of the GEOWS 2009, pp. 177–182. IEEE (2009)Google Scholar
  19. 19.
    Schreier, M.: Qualitative Content Analysis in Practice. SAGE Publications, Thousand Oaks (2012)Google Scholar
  20. 20.
    Shen, Z., Ma, K.L.: Path visualization for adjacency matrices. In: Proceedings of the EUROVIS 2007, pp. 83–90. Eurographics Association (2007)Google Scholar
  21. 21.
    Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann Publishers Inc., Burlington (2004)Google Scholar
  22. 22.
    Wilson, J.M.: Gantt charts: a centenary appreciation. Eur. J. Oper. Res. 149(2), 430–437 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wu, H.M., Tzeng, S., Chen, C.H.: Matrix visualization. In: Wu, H.M., Tzeng, S., Chen, C.H. (eds.) Handbook of Data Visualization, pp. 681–708. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Simone Kriglstein
    • 1
  • Johanna Haider
    • 1
  • Günter Wallner
    • 2
  • Margit Pohl
    • 1
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.University of Applied Arts ViennaViennaAustria

Personalised recommendations