Advertisement

Using One-Dimensional Compaction for Smaller Graph Drawings

  • Ulf RüeggEmail author
  • Christoph Daniel Schulze
  • Daniel Grevismühl
  • Reinhard von Hanxleden
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9781)

Abstract

We use the technique of one-dimensional compaction as part of two new methods tackling problems in the context of automatic diagram layout: First, a post-processing of the layer-based layout algorithm, also known as Sugiyama layout, and second a placement algorithm for connected components with external extensions. We apply our methods to dataflow diagrams from practical applications and find that the first method significantly reduces the width of left-to-right drawn diagrams. The second method allows to properly arrange disconnected graphs that have hierarchy-crossing edges.

Keywords

Layout Facility Vertical Segment Constraint Graph Compaction Strategy Layout Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the German Research Foundation under the project Compact Graph Drawing with Port Constraints (ComDraPor, DFG HA 4407/8-1).

References

  1. 1.
    Freivalds, K., Dogrusoz, U., Kikusts, P.: Disconnected graph layout and the polyomino packing approach. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 378–391. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Frey, P., von Hanxleden, R., Krüger, C., Rüegg, U., Schneider, C., Spönemann, M.: Efficient exploration of complex data flow models. In: Proceedings of Modellierung 2014, Vienna, Austria, March 2014Google Scholar
  3. 3.
    Friedrich, C., Schreiber, F.: Flexible layering in hierarchical drawings with nodes of arbitrary size. In: Proceedings of the 27th Australasian Conference on Computer Science (ACSC 2004), pp. 369–376. Australian Computer Society Inc. (2004)Google Scholar
  4. 4.
    Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.-P.: A technique for drawing directed graphs. Softw. Eng. 19(3), 214–230 (1993)CrossRefGoogle Scholar
  5. 5.
    Goehlsdorf, D., Kaufmann, M., Siebenhaller, M.: Placing connected components of disconnected graphs. In: 6th International Asia-Pacific Symposium on Visualization, pp. 101–108, February 2007Google Scholar
  6. 6.
    Gutwenger, C., von Hanxleden, R., Mutzel, P., Rüegg, U., Spönemann, M.: Examining the compactness of automatic layout algorithms for practical diagrams. In: Proceedings of the Workshop on Graph Visualization in Practice (GraphViP 2014), Melbourne, Australia, July 2014Google Scholar
  7. 7.
    Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, pp. 409–453. CRC Press (2013)Google Scholar
  8. 8.
    Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, New York (1990)zbMATHGoogle Scholar
  9. 9.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Vis. Lang. Comput. 6(2), 183–210 (1995)CrossRefGoogle Scholar
  10. 10.
    North, S.C., Woodhull, G.: Online hierarchical graph drawing. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 232–246. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation Using Ptolemy II. Ptolemy.org (2014). http://ptolemy.eecs.berkeley.edu/books/Systems/
  12. 12.
    Rüegg, U., Schulze, C.D., Grevismühl, D., von Hanxleden, R.: Using one-dimensional compaction for smaller graph drawings. Technical report 1601. Kiel University, Department of Computer Science, April 2016. ISSN: 2192–6247Google Scholar
  13. 13.
    Schulze, C.D., Spönemann, M., von Hanxleden, R.: Drawing layered graphs with port constraints. J. Vis. Lang. Comput. Spec. Issue Diagram Aesthetics Layout 25(2), 89–106 (2014)CrossRefGoogle Scholar
  14. 14.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ulf Rüegg
    • 1
    Email author
  • Christoph Daniel Schulze
    • 1
  • Daniel Grevismühl
    • 1
  • Reinhard von Hanxleden
    • 1
  1. 1.Deptartment of Computer ScienceKiel UniversityKielGermany

Personalised recommendations