Psychophysical Power Optimization of Friction Modulation for Tactile Interfaces

  • Thomas Sednaoui
  • Eric Vezzoli
  • David Gueorguiev
  • Michel Amberg
  • Cedrick Chappaz
  • Betty Lemaire-Semail
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9775)


Ultrasonic vibration and electrovibration can modulate the friction between a surface and a sliding finger. The power consumption of these devices is critical to their integration in modern mobile devices such as smartphones. This paper presents a simple control solution to reduce up to 68.8 % this power consumption by taking advantage of the human perception limits.


Ultrasonic lubrication Electrovibrations Tactile device Friction control Power consumption 



This work was founded by the FP7 Marie Curie Initial Training Network PROTOTOUCH, grant agreement No. 317100.

This work has been supported by IRCICA USR 3380 Univ. Lille - CNRS (


  1. 1.
    Schena, B.M.: Directional inertial tactile feedback using rotating masses. USA Brevet US7182691 B1, 27 February 2007Google Scholar
  2. 2.
    Meyer, D.J., Peshkin, M.A., Colgate, E.J.: Fingertip friction modulation due to electrostatic attraction. In: World Haptics Conference (WHC) 2013, 14 April 2013Google Scholar
  3. 3.
    Amberg, M., Giraud, F., Semail, B., Olivo, P., Casiez, G., Roussel, N.: STIMTAC: a tactile input device with programmable friction. chez In: Proceedings of the 24th Annual ACM Symposium Adjunct on User Interface Software and Technology, 16 October 2011Google Scholar
  4. 4.
    Giraud, F., Amberg, M., Lemaire-Semail, B., Casiez, G.: Design of a transparent tactile stimulator. In: Haptics Symposium (Haptics), pp. 485–489, 5 March 2012Google Scholar
  5. 5.
    Sednaoui, T., Vezzoli, E., Dzidek, B., Lemaire-Semail, B., Chappaz, C., Adams, M.: Experimental evaluation of friction reduction in ultrasonic devices. In: World Haptic, Chicago (2015)Google Scholar
  6. 6.
    Vezzoli, E., Ben Messaoud, W., Amberg, M., Giraud, F., Lemaire-Semail, B., Bueno, M.-A.: Physical and perceptual independence of ultrasonic vibration and electrovibration for friction modulation. IEEE Trans. Haptics 8(12), 235–239 (2015)CrossRefGoogle Scholar
  7. 7.
    Frédéric, G., Amberg, M., Lemaire-Semail, B.: Merging two tactile stimulation principles: electrovibration and squeeze film effect. In: World Haptic (WHC), Daejeon (2013)Google Scholar
  8. 8.
    Ben Messaoud, W., Vezzoli, E., Giraud, F., Lemaire-Semail, B.: Pressure dependence of friction modulation in ultrasonic devices. In: World Haptic Conference, Versaille (2015)Google Scholar
  9. 9.
    Kaczmarek, K.A., Nammi, K., Agarwal, A.K., Tyler, M.E., Haase, S.J., Beebe, D.: Polarity effect in electrovibration for tactile display. IEEE Trans. Biomed. Eng. 53(110), 2047–2054 (2006)CrossRefGoogle Scholar
  10. 10.
    Vezzoli, E., Sednaoui, T., Amberg, M., Giraud, F., Lemaire-Semail, B.: Wide bandwidth ultrasonic tactile: a friction coefficient control device. In: EuroHaptics 2016, London (2016)Google Scholar
  11. 11.
    Kingdom, F.A., Prins, N.: Psychophysics: A Pratical Introduction. Elsevier, London (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomas Sednaoui
    • 1
    • 2
  • Eric Vezzoli
    • 1
  • David Gueorguiev
    • 3
  • Michel Amberg
    • 1
  • Cedrick Chappaz
    • 4
  • Betty Lemaire-Semail
    • 1
  1. 1.Univ. Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, EA 2697 - L2EP – Laboratoire d’Electrotechnique et d’Electronique de PuissanceLilleFrance
  2. 2.STMicroelectronicsCrollesFrance
  3. 3.Institute of Neuroscience (IoNS)Université Catholique de LouvainBrusselsBelgium
  4. 4.HAP2UGrenobleFrance

Personalised recommendations