Textile Fabrics’ Texture: From Multi-level Feature Extraction to Tactile Simulation

  • Wael Ben Messaoud
  • Marie-Ange Bueno
  • Betty Lemaire-Semail
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9775)

Abstract

In this study, the focus is put on the simulation of texture using a tactile feedback device based on ultrasonic vibrations. The textile fabrics are investigated as complex surfaces for simulation. The proposed multi-level feature extraction of the textile fabrics is based on the friction profile measured using a tribometer. Two types of sliders are used here: the first slider is an aluminum fine rigid tool to characterize the fine details of the surfaces while the second is a real finger operated to characterize the envelope of the signal. By that way, the input signals for the tactile stimulator perform the levels of characteristics. Finally, a psychophysical experiment is carried out to validate the capability to find a level of the texture amplitude which can simulate well the real fabrics textures.

Keywords

Textile fabrics Tactile stimulation Ultrasonic vibrations Friction modulation 

References

  1. 1.
    Peck, J., Childers, T.L.: To have and to hold: the influence of haptic information on product judgments. J. Mark. 67(2), 35–48 (2003)CrossRefGoogle Scholar
  2. 2.
    Fontana, M., Rizzi, C., Cugini, U.: Physics-based modelling and simulation of functional cloth for virtual prototyping applications. In: Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications, Genoa, Italy, pp. 267–272 (2004)Google Scholar
  3. 3.
    Kaczmarek, K.A., Nammi, K., Agarwal, A.K., Tyler, M.E., Haase, S.J., Beebe, D.J.: Polarity effect in electrovibration for tactile display. IEEE Trans. Biomed. Eng. 53(10), 2047–2054 (2006)CrossRefGoogle Scholar
  4. 4.
    Bau, O., Poupyrev, I., Israr, A., Harrison, C.: TeslaTouch: electrovibration for touch surfaces. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, New York, NY, USA, pp. 283–292 (2010)Google Scholar
  5. 5.
    Wiertlewski, M., Leonardis, D., Meyer, D.J., Peshkin, M.A., Colgate, J.E.: A high-fidelity surface-haptic device for texture rendering on bare finger. In: Auvray, M., Duriez, C. (eds.) Haptics: Neuroscience, Devices, Modeling, and Applications, pp. 241–248. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Ben Messaoud, W., Giraud, F., Semail, B., Amberg, M., Bueno, M.A.: Amplitude control of an ultrasonic vibration for a tactile stimulator. IEEE/ASME Trans. Mechatron. 21(3) (2016)Google Scholar
  7. 7.
    Amberg, M., Giraud, F., Semail, B., Olivo, P., Casiez, G., Roussel, N.: STIMTAC: a tactile input device with programmable friction. In: Proceedings of the 24th Annual ACM Symposium Adjunct on User Interface Software and Technology, New York, NY, USA, pp. 7–8 (2011)Google Scholar
  8. 8.
    Klatzky, R.L., Lederman, S.J., Reed, C.: There’s more to touch than meets the eye: the salience of object attributes for haptics with and without vision. J. Exp. Psychol. Gen. 116(4), 356 (1987)CrossRefGoogle Scholar
  9. 9.
    Dreby, E.: A friction meter for determining the coefficient of kinetic friction of fabrics. J. Res. Natl. Bur. Stand. 31, 237–246 (1943)CrossRefGoogle Scholar
  10. 10.
    Bueno, M.-A., Lamy, B., Renner, M., Viallier-Raynard, P.: Tribological investigation of textile fabrics. Wear 195(1–2), 192–200 (1996)CrossRefGoogle Scholar
  11. 11.
    Strese, M., Schuwerk, C., Steinbach, E.: On the retrieval of perceptually similar haptic surfaces. In: 2015 Seventh International Workshop on Quality of Multimedia Experience (QoMEX), pp. 1–6 (2015)Google Scholar
  12. 12.
    Martinot, F., Houzefa, A., Biet, M., Chaillou, C.: Mechanical responses of the fingerpad and distal phalanx to friction of a grooved surface: effect of the contact angle. In: 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 297–300 (2006)Google Scholar
  13. 13.
    Bensmaïa, S., Hollins, M.: Pacinian representations of fine surface texture. Percept. Psychophys. 67(5), 842–854 (2005)CrossRefGoogle Scholar
  14. 14.
    Fagiani, R., Massi, F., Chatelet, E., Costes, J.P., Berthier, Y.: Contact of a finger on rigid surfaces and textiles: friction coefficient and induced vibrations. Tribol. Lett. 48(2), 145–158 (2012)CrossRefGoogle Scholar
  15. 15.
    Bueno, M.-A., Lemaire-Semail, B., Amberg, M., Giraud, F.: Pile surface tactile simulation: role of the slider shape, texture close to fingerprints, and the joint stiffness. Tribol. Lett. 59(1), 1–12 (2015)CrossRefGoogle Scholar
  16. 16.
    Ben Messaoud, W., Amberg, M., Lemaire-Semail, B., Giraud, F., Bueno, M.-A.: High fidelity closed loop controlled friction in SMARTTAC tactile stimulator. Presented at the 17th European Conference on Power Electronics and Applications (EPE 2015 ECCE-Europe), Genève, Suisse, pp. 1–9 (2015)Google Scholar
  17. 17.
    Bueno, M.-A., Lemaire-Semail, B., Amberg, M., Giraud, F.: A simulation from a tactile device to render the touch of textile fabrics: a preliminary study on velvet. Text. Res. J., 40517514521116 (2014)Google Scholar
  18. 18.
    Bueno, M.-A., Viallier, P., Durand, B., Renner, M., Lamy, B.: Instrumental measurement and macroscopical study of sanding and raising. Text. Res. J. 67(11), 779–787 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wael Ben Messaoud
    • 1
    • 2
  • Marie-Ange Bueno
    • 2
  • Betty Lemaire-Semail
    • 1
  1. 1.Univ. Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, EA 2697 - L2EP – Laboratoire d’Electrotechnique et d’Electronique de PuissanceLilleFrance
  2. 2.Univ. Haute Alsace, LPMT – Laboratoire de Physique et Mécanique Textiles, Ecole Nationale Supérieure d’Ingénieurs Sud AlsaceMulhouse CedexFrance

Personalised recommendations