At-Home Computer-Aided Myoelectric Training System for Wrist Prosthesis

  • Anastasios Vilouras
  • Hadi Heidari
  • William Taube Navaraj
  • Ravinder Dahiya
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9775)


Development of tools for rehabilitation and restoration of the movement after amputation can benefit from the real time interactive virtual animation model of the human hand. Here, we report a computer-aided training/learning system for wrist disarticulated amputees, using the open source integrated development environment called “Processing”. This work also presents the development of a low-cost surface Electro-MyoGraphic (sEMG) interface, which is an ideal tool for training and rehabilitation applications. The processed sEMG signals are encoded after digitization to control the animated hand. Experimental results demonstrate the effectiveness of the sEMG control system in acquiring sEMG signals for real-time control. Users have also the ability to connect their prostheses with the training system and observe its operation for a more explicit demonstration of movements.


Training system Computer-aided sEMG Control prosthesis 



This work was supported in part by European Commission through grant agreement PITNGA-2012-317488-CONTEST, and Engineering and Physical Sciences Council (EPSRC) through Engineering Fellowship for Growth – Printable Tactile Skin (EP/M002527/1) and Centre for Doctoral Training in Integrative Sensing Measurement (EP/L016753/1) of the University of Glasgow.


  1. 1.
    Sherman, E.D.: A Russian bioelectric-controlled prosthesis: report of a research team from the Rehabilitation Institute of Montreal. Can. Med. Assoc. J. 91(24), 1268 (1964)Google Scholar
  2. 2.
    Navaraj, W.T., et al.: Upper limb prosthetic control using toe gesture sensors. In: IEEE SENSORS Conference Proceedings, pp. 1–4 (2015)Google Scholar
  3. 3.
    Kuiken, T.A., et al.: Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369, 371–380 (2007)CrossRefGoogle Scholar
  4. 4.
    Pasquina, P.F., et al.: First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand. J. Neurosci. Methods 244, 85–93 (2015)CrossRefGoogle Scholar
  5. 5.
    Pylatiuk, C., Schulz, S., Döderlein, L.: Results of an Internet survey of myoelectric prosthetic hand users. Prosthet. Orthot. Int. 31(4), 362–370 (2007)CrossRefGoogle Scholar
  6. 6.
    Carey, S.L., Dubey, R.V., Bauer, G.S., Highsmith, M.J.: Kinematic comparison of myoelectric and body powered prostheses while performing common activities. Prosthet. Orthot. Int. 33(2), 179–186 (2009)CrossRefGoogle Scholar
  7. 7.
    Simon, A.M., Stern, K., Hargrove, L.J.: A comparison of proportional control methods for pattern recognition control. In: International Conference of the IEEE EMBS (2011)Google Scholar
  8. 8.
    Corbett, E.A., Perreault, E.J., Kuiken, T.A.: Comparison of electromyography and force as interfaces for prosthetic control. J. Rehabil. Res. Dev. 48(6), 629 (2011)CrossRefGoogle Scholar
  9. 9.
    Lock, B.A., et al.: Prosthesis-guided training for practical use of pattern recognition control of prostheses. In: Myoelectric Symposium (2011)Google Scholar
  10. 10.
    Simon, A.M., Lock, B.A., Stubblefield, K.A., Hargrove, L.J.: Prosthesis-guided training increases functional wear time and improves tolerance to malfunctioning inputs of pattern recognition–controlled prostheses. In: Myoelectric Symposium (2011)Google Scholar
  11. 11.
    DiCicco, M., Lucas, L., Matsuoka, Y.: Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1622–1627 (2004)Google Scholar
  12. 12.
    Nielsen, J.L., et al.: Simultaneous and proportional force estimation for multifunction myoelectric prostheses using mirrored bilateral training. IEEE Trans. Biomed. Eng. 58(3), 681–688 (2011)CrossRefGoogle Scholar
  13. 13.
    Davoodi, R., Loeb, G.E.: Real-time animation software for customized training to use motor prosthetic systems. IEEE Trans. Neural Syst. Rehabil. Eng. 20(2), 134–142 (2012)CrossRefGoogle Scholar
  14. 14.
    Antonio, B.M.J., Roberto, M.G.: Virtual system for training and evaluation of candidates to use a myoelectric prosthesis. In: 2011 Pan American Health Care Exchanges (PAHCE), pp. 225–230 (2011)Google Scholar
  15. 15.
    Barraza-Madrigal, J.A., Ramírez-García, A., Muñoz-Guerrero, R.: A virtual upper limb prosthesis as a training system. In: Electrical Engineering Computing Science and Automatic Control (CCE), pp. 210–215 (2010)Google Scholar
  16. 16.
    Blana, D., et al.: Feasibility of using combined EMG and kinematic signals for prosthesis control: a simulation study using a virtual reality environment. J. Electromyogr. Kinesiol. (2015)Google Scholar
  17. 17.
    Andrew, J.T.: Transhumeral and elbow disarticulation anatomically contoured socket considerations. JPO: J. Prosthet. Orthot. 20(3), 107–117 (2008)Google Scholar
  18. 18.
    Ballas, M.T., Ballas, G.J., Epoch Medical Innovations, Inc.: Adaptive compression prosthetic socket system and method, U.S. Patent 20,160,000,583 (2016)Google Scholar
  19. 19.
    Hurley, G.R., Williams, J.R., Lim Innovations, Inc.: Modular prosthetic sockets and methods for making same, U.S. Patent 20,160,000,587 (2016)Google Scholar
  20. 20.
    Erik Scheme, P., Kevin Englehart, P.: Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. J. Rehabil. Res. Dev. 48(6), 643 (2011)CrossRefGoogle Scholar
  21. 21.
    Lapatki, B.G., et al.: A thin, flexible multielectrode grid for high-density surface EMG. J. Appl. Physiol. 96(1), 327–336 (2004)CrossRefGoogle Scholar
  22. 22.
    Kim, D.H., et al.: Epidermal electronics. Science 333(6044), 838–843 (2011)CrossRefGoogle Scholar
  23. 23.
    Dahiya, R.S., et al.: Directions toward effective utilization of tactile skin: a review. IEEE Sens. J. 13(11), 4121–4138 (2013)CrossRefGoogle Scholar
  24. 24.
    Dahiya, R.S., et al.: Towards tactile sensing system on chip for robotic applications. IEEE Sens. J. 11(12), 3216–3226 (2011)CrossRefGoogle Scholar
  25. 25.
    Dahiya, R.S., et al.: Tactile sensing chips with POSFET array and integrated interface electronics. IEEE Sens. J. 14(10), 3448–3457 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yogeswaran, N., Dang, W., Navaraj, W.T., Shakthivel, D., Khan, S., Polat, E.O., Gupta, S., Heidari, H., Kaboli, M., Lorenzelli, L., Cheng, G., Dahiya, R.: New materials and advances in making electronic skin for interactive robots. Adv. Robot. 29(21), 1359–1373 (2015)CrossRefGoogle Scholar
  27. 27.
    Heidari, H., Bonizzoni, E., Gatti, U., Maloberti, F.: A CMOS current-mode magnetic hall sensor with integrated front-end. IEEE Trans. Circuits Syst. I Regul. Pap. 62(5), 1270–1278 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Taylor, C.L., Schwarz, R.J.: The anatomy and mechanics of the human hand. Artif. Limbs 2(2), 22–35 (1955)Google Scholar
  29. 29.
    Napier, J.R.: The prehensile movements of the human hand. Bone Joint J. 38(4), 902–913 (1956)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anastasios Vilouras
    • 1
  • Hadi Heidari
    • 1
  • William Taube Navaraj
    • 1
  • Ravinder Dahiya
    • 1
  1. 1.Bendable Electronics and Sensing Technologies (BEST) Group, Electronics and Nanoscale Engineering Research Division, School of EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations