Texture Rendering Strategies with a High Fidelity - Capacitive Visual-Haptic Friction Control Device

  • Eric Vezzoli
  • Thomas Sednaoui
  • Michel Amberg
  • Frédéric Giraud
  • Betty Lemaire-Semail
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9774)


Ultrasonic vibrations of a plate can modify the perception of the friction between a surface and a sliding finger. This principle, coupled with modern position sensing techniques, is able to reproduce textured materials. In this paper, an open loop control through model inversion of the friction force between the finger and the plate is presented. The device incorporating the control system is described, and two different reproduction strategies are formalized to address the reproduction of objects and textures. In the end, a psychophysical experiment evaluating the two control strategies is described.


Ultrasonic Tactile device Ultrasonic vibrations Friction control 



This work was founded by the FP7 Marie Curie Initial Training Network PROTOTOUCH, grant agreement No. 317100 and supported by IRCICA USR 3380 Univ. Lille - CNRS (www.ircica.univ-lille1.fr).


  1. 1.
    Mallinckrodt, E., Hughes, A.L., Sleator Jr., W.: Perception by the skin of electrically induced vibrations. Science 118, 277–278 (1953)CrossRefGoogle Scholar
  2. 2.
    Vezzoli, E., Amberg, M., Giraud, F., Lemaire-Semail, B.: Electrovibration modeling analysis. In: Auvray, M., Duriez, C. (eds.) EuroHaptics 2014, Part II. LNCS, vol. 8619, pp. 369–376. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Shultz, C.D., Peshkin, M.A., Colgate, J.E.: Surface haptics via electroadhesion: expanding electrovibration with Johnsen and Rahbek. In: 2015 IEEE World Haptics Conference (WHC), pp. 57–62 (2015)Google Scholar
  4. 4.
    Biet, M., Giraud, F., Lemaire-Semail, B.: Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2678–2688 (2007)CrossRefGoogle Scholar
  5. 5.
    Vezzoli, E., Dzidek, B.M., Sednaoui, T., Giraud, F., Adams, M., Lemaire-Semail, B.: Role of fingerprint mechanics and non-Coulombic friction in ultrasonic devices. In: WHC (2015)Google Scholar
  6. 6.
    Biet, M., Casiez, G., Giraud, F., Lemaire-Semail, B.: Discrimination of virtual square gratings by dynamic touch on friction based tactile displays. In: Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Haptics 2008, pp. 41–48 (2008)Google Scholar
  7. 7.
    Robles-De-La-Torre, G., Hayward, V.: Force can overcome object geometry in the perception of shape through active touch. Nature 412(6845), 445–448 (2001)CrossRefGoogle Scholar
  8. 8.
    Watanabe, T., Fukui, S.: A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: Proceedings of the 1995 IEEE International Conference on Robotics and Automation, vol. 1, pp. 1134–1139 (1995)Google Scholar
  9. 9.
    Sednaoui, T., Vezzoli, E., Dzidek, B.M., Lemaire-Semail, B., Chiappaz, C., Adams, M.: Experimental evaluation of friction reduction in ultrasonic devices. In: World Haptics Conference (WHC) (2015)Google Scholar
  10. 10.
    Dzidek, B.M., Adams, M., Zhang, Z., Johnson, S., Bochereau, S., Hayward, V.: Role of occlusion in non-Coulombic slip of the finger pad. In: Auvray, M., Duriez, C. (eds.) EuroHaptics 2014, Part I. LNCS, vol. 8618, pp. 109–116. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Ben Messaoud, W., Lemaire-Semail, B., Bueno, M.-A., Amberg, M., Giraud, F.: Closed-loop control for squeeze film effect in tactile stimulator. In: Actuator, Bremen (2014)Google Scholar
  12. 12.
    Wiertlewski, M., Hayward, V.: Mechanical behavior of the fingertip in the range of frequencies and displacements relevant to touch. J. Biomech. 45(11), 1869–1874 (2012)CrossRefGoogle Scholar
  13. 13.
    Vezzoli, E., Ben Messaoud, W., Amberg, M., Lemaire-Semail, B., Giraud, F., Bueno, M.-A.: Physical and perceptual independence of ultrasonic vibration and electrovibration for friction modulation. IEEE Trans. Haptics 8, 235–239 (2015)CrossRefGoogle Scholar
  14. 14.
    Wiertlewski, M., Leonardis, D., Meyer, D.J., Peshkin, M.A., Colgate, J.: A high-fidelity surface-haptic device for texture rendering on bare finger. In: Auvray, M., Duriez, C. (eds.) EuroHaptics 2014, Part II. LNCS, vol. 8619, pp. 241–248. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Amberg, M., Giraud, F., Semail, B., Olivo, P., Casiez, G., Roussel, N.: STIMTAC: a tactile input device with programmable friction. In: Proceedings of the 24th Annual ACM Symposium Adjunct on User Interface Software and Technology, New York, NY, USA, pp. 7–8 (2011)Google Scholar
  16. 16.
    Wiertlewski, M., Lozada, J., Hayward, V.: The spatial spectrum of tangential skin displacement can encode tactual texture. IEEE Trans. Robot. 27(3), 461–472 (2011)CrossRefGoogle Scholar
  17. 17.
    Klatzky, R.L., Lederman, S.J.: Touch. In: Handbook of Psychology. Wiley (2003)Google Scholar
  18. 18.
    Meyer, D.J., Peshkin, M.A., Colgate, J.E.: Modeling and synthesis of tactile texture with spatial spectrograms for display on variable friction surfaces. In: IEEE - World Haptics Conference (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Eric Vezzoli
    • 1
  • Thomas Sednaoui
    • 1
    • 2
  • Michel Amberg
    • 1
  • Frédéric Giraud
    • 1
  • Betty Lemaire-Semail
    • 1
  1. 1.Univ. Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, EA 2697 - L2EP – Laboratoire d’Electrotechnique et d’Electronique de PuissanceLilleFrance
  2. 2.STMicroelectronicsCrollesFrance

Personalised recommendations