Belowground Defence Strategies Against Fusarium oxysporum

  • Louise F. Thatcher
  • Brendan N. Kidd
  • Kemal Kazan
Part of the Signaling and Communication in Plants book series (SIGCOMM)


The root-infecting pathogen Fusarium oxysporum (causative agent of the Fusarium wilt disease) causes widespread losses in many plant species, including important crop plants such as cotton, melons, bananas and tomatoes; many legume species such as chickpeas, peas, lentils and Medicago; and various tree species such as palms. The spores of this pathogen survive in soil for long periods; thus, it is notoriously difficult to eradicate following soil contamination. The pathogen enters into the compatible plants through root tips and lateral root initials, initially invading the cortex tissue. It then gradually moves through the xylem tissue to the upper part of the plant. In addition to the secretion of effectors (e.g. toxins) into the plant cell, the infection by this pathogen can lead to the deposition of plant defence substances such as gums and tyloses in the xylem, which then blocks the water and solute transport to the upper parts of the plant. This leads to wilting, discolouration of xylem, followed by senescence and infection-associated necrotic symptom development in the leaves of infected plants. A number of other developmental changes can also be observed in pathogen-infected plants. Here we describe F. oxysporum–host interactions, highlighting recent updates on pathogen infection strategies and host resistance mechanisms.


Fusarium Oxysporum Fusarium Wilt Fusaric Acid Formae Speciales Oxysporum Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by funds from the Commonwealth Scientific and Industrial Research Organization (CSIRO). BNK is supported by a CSIRO Office of the Chief Executive (OCE) postdoctoral fellowship. The 35sSIX4 microarray results presented herein were undertaken within an OCE postdoctoral fellowship awarded to LFT and with the assistance of resources from the Australian Genome Research Facility (AGRF) which is supported by the Australian Government. We thank past members of our labs for their valuable contributions to some of the work reviewed here.


  1. Abdallah NA, Shah D, Abbas D, Madkour M (2010) Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops 1:344–350PubMedCrossRefGoogle Scholar
  2. Abera M, Sakhuja PK, Fininsa C, Ahmed S (2011) Status of chickpea fusarium wilt (Fusarium oxysporum f. sp. ciceris) in northwestern Ethiopia. Arch Phytopathol Plant Prot 44:1261–1272CrossRefGoogle Scholar
  3. Agrios GN (2005) Chapter 11—Plant diseases caused by fungi. In: Agrios GN (ed) Plant pathology, 5th edn. Academic, San Diego, CA, pp 385–614CrossRefGoogle Scholar
  4. Aimé S, Alabouvette C, Steinberg C, Olivain C (2013) The endophytic strain Fusarium oxysporum Fo47: a good candidate for priming the defense responses in tomato roots. Mol Plant Microbe Interact 26:918–926PubMedCrossRefGoogle Scholar
  5. Ajilogba CF, Babalola OO (2013) Integrated management strategies for tomato Fusarium wilt. Biocontrol Sci 18:117–127PubMedCrossRefGoogle Scholar
  6. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bae H, Kim MS, Sicher RC, Bae HJ, Bailey BA (2006) Necrosis- and ethylene-inducing peptide from Fusarium oxysporum induces a complex cascade of transcripts associated with signal transduction and cell death in Arabidopsis. Plant Physiol 141:1056–1067PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bai TT, Xie WB, Zhou PP, Wu ZL, Xiao WC, Zhou L, Sun J, Ruan XL, Li HP (2013) Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4. PLoS One 8(9):e73945PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bailey BA (1995) Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology 85(10):1250–1255CrossRefGoogle Scholar
  10. Beckman CH (1987) The nature of wilt diseases of plants. APS Press, St. Paul, MN, accessed from Google Scholar
  11. Berrocal-Lobo M, Molina A (2004) Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact 17:763–770PubMedCrossRefGoogle Scholar
  12. Berrocal-Lobo M, Molina A (2008) Arabidopsis defense response against Fusarium oxysporum. Trends Plant Sci 13:145–150PubMedCrossRefGoogle Scholar
  13. Bitas V, McCartney N, Li N, Demers J, Kim J, Kim H, Brown K, Kang S (2015) Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signalling. Front Microbiol 6:1248. doi: 10.3389/fmicb.2015.01248 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Böhm H, Albert I, Oome S, Raaymakers T, den Ackerveken G, Nürnberger T (2014) A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLoS Pathog 10(11):e1004491. doi: 10.1371/journal.ppat.1004491 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bohn GW, Tucker CM (1939) Immunity to Fusarium wilt in the tomato. Science 89:603–604PubMedCrossRefGoogle Scholar
  16. Brotman Y, Normantovich M, Goldenberg Z, Zvirin Z, Kovalski I, Stovbun N, Doniger T, Bolger AM, Troadec C, Bendahmane A et al (2013) Dual resistance of melon to Fusarium oxysporum races 0 and 2 and to Papaya ring-spot virus is controlled by a pair of head-to-head-oriented NB-LRR genes of unusual architecture. Mol Plant 6:235–238PubMedCrossRefGoogle Scholar
  17. Calero-Nieto F, Di Pietro A, Roncero MI, Hera C (2007) Role of the transcriptional activator xlnR of Fusarium oxysporum in regulation of xylanase genes and virulence. Mol Plant Microbe Interact 20:977–985PubMedCrossRefGoogle Scholar
  18. Castillejo MÁ, Bani M, Rubiales D (2015) Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. Phytochemistry 115:44–58PubMedCrossRefGoogle Scholar
  19. Catanzariti A-M, Lim GTT, Jones DA (2015) The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease. New Phytol 207:106–118. doi: 10.1111/nph.13348 PubMedCrossRefGoogle Scholar
  20. Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, Kwon SK, Crüsemann M, Bok Lee Y, Kim JF, Giaever G, Nislow C, Moore BS, Thomashow LS, Weller DM, Kwak YS (2015) Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. doi: 10.1038/ismej.2015.95 PubMedGoogle Scholar
  21. Chatterjee M, Gupta S, Bhar A, Chakraborti D, Basu D, Das S (2014) Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genomics 15:949. doi: 10.1186/1471-2164-15-949 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen YC, Wong CL, Muzzi F, Vlaardingerbroek I, Kidd BN, Schenk PM (2014a) Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance. Sci Rep 4:5584PubMedPubMedCentralGoogle Scholar
  23. Chen YC, Kidd BN, Carvalhais LC, Schenk PM (2014b) Molecular defense responses in roots and the rhizosphere against Fusarium oxysporum. Plant Signal Behav 9:e977710PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cohen BA, Amsellem Z, Maor R, Sharon A, Gressel J (2002) Transgenically enhanced expression of indole-3-acetic Acid confers hypervirulence to plant pathogens. Phytopathology 92:590–596PubMedCrossRefGoogle Scholar
  25. Cole SJ, Diener AC (2013) Diversity in receptor-like kinase genes is a major determinant of quantitative resistance to Fusarium oxysporum f.sp. matthioli. New Phytol 200:172–184. doi: 10.1111/nph.12368 PubMedCrossRefGoogle Scholar
  26. Cole SJ, Yoon AJ, Faull KF, Diener AC (2014) Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine- and leucine-conjugated jasmonates. Mol Plant Pathol 15:589–600PubMedPubMedCentralCrossRefGoogle Scholar
  27. Czymmek KJ, Fogg M, Powell DH, Sweigard J, Park S-Y, Kang S (2007) In vivo time-lapse documentation using confocal and multi-photon microscopy reveals the mechanisms of invasion into the Arabidopsis root vascular system by Fusarium oxysporum. Fungal Genet Biol 44:1011–1023PubMedCrossRefGoogle Scholar
  28. De Coninck B, Timmermans P, Vos C, Cammue BP, Kazan K (2015) What lies beneath: belowground defense strategies in plants. Trends Plant Sci 20:91–101PubMedCrossRefGoogle Scholar
  29. Delessert C, Kazan K, Wilson IW, Van Der Straeten D, Manners J, Dennis ES, Dolferus R (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J 43:745–757PubMedCrossRefGoogle Scholar
  30. de Sain M, Rep M (2015) The role of pathogen-secreted proteins in fungal vascular wilt diseases. Int J Mol Sci 16:23970–23993PubMedPubMedCentralCrossRefGoogle Scholar
  31. Diener AC (2013) Routine mapping of Fusarium wilt resistance in BC(1) populations of Arabidopsis thaliana. BMC Plant Biol 13:171PubMedPubMedCentralCrossRefGoogle Scholar
  32. Diener AC, Ausubel FM (2005) RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:305–321PubMedPubMedCentralCrossRefGoogle Scholar
  33. Di Pietro A, García-Maceira FI, Méglecz E, Roncero MIG (2001) A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol Microbiol 39:1140–1152PubMedCrossRefGoogle Scholar
  34. Di Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG (2003) Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol 4:315–325PubMedCrossRefGoogle Scholar
  35. Dong X, Xiong Y, Ling N, Shen Q, Guo S (2014) Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium. World J Microbiol Biotechnol 30:1399–1408PubMedCrossRefGoogle Scholar
  36. Duyvesteijn RG, van Wijk R, Boer Y, Rep M, Cornelissen BJ, Haring MA (2005) Frp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Mol Microbiol 57:1051–1063PubMedCrossRefGoogle Scholar
  37. Forsyth LM, Smith LJ, Aitken EA (2006) Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity. Mycol Res 110:929–935PubMedCrossRefGoogle Scholar
  38. Fortunato AA, Rodrigues FÁ, do Nascimento KJ (2012a) Physiological and biochemical aspects of the resistance of banana plants to Fusarium wilt potentiated by silicon. Phytopathology 102:957–966PubMedCrossRefGoogle Scholar
  39. Fortunato AA, Rodrigues FA, Baroni JCP, Soares GCB, Rodiguez MAD, Pereira OL (2012b) Silicon suppresses fusarium wilt development in banana plants. J Phytopathol 160:674–679CrossRefGoogle Scholar
  40. Fortunato AA, da Silva WL, Rodrigues FÁ (2014) Phenylpropanoid pathway is potentiated by silicon in the roots of banana plants during the infection process of Fusarium oxysporum f. sp. cubense. Phytopathology 104:597–603PubMedCrossRefGoogle Scholar
  41. Gaspar YM, McKenna JA, McGinness BS, Hinch J, Poon S, Connelly AA, Anderson MA, Heath RL (2014) Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1. J Exp Bot 65:1541–1550PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gawehns F, Houterman PM, Ichou FA, Michielse CB, Hijdra M, Cornelissen BJC, Rep M, Takken FLW (2014) The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death. Mol Plant Microbe Interact 27:336–348PubMedCrossRefGoogle Scholar
  43. Ghag SB, Shekhawat UK, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants. PLoS One 7:e39557PubMedPubMedCentralCrossRefGoogle Scholar
  44. Ghag SB, Shekhawat UK, Ganapathi TR (2014) Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnol J 12:541–553PubMedCrossRefGoogle Scholar
  45. Gonzalez-Cendales Y, Catanzariti AM, Baker B, McGrath DJ, Jones DA (2015) Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes. Mol Plant Pathol. doi: 10.1111/mpp.12294 PubMedGoogle Scholar
  46. Gordon TR, Martyn RD (1997) The evolutionary biology of Fusarium oxysporum. Ann Rev Phytopathol 35:111–128CrossRefGoogle Scholar
  47. Guo L, Han L, Yang L, Zeng H, Fan D, Zhu Y, Feng Y, Wang G, Peng C, Jiang X, Zhou D, Ni P, Liang C, Liu L, Wang J, Mao C, Fang X, Peng M, Huang J (2014) Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease. PLoS One 9(4):e95543PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gust AA, Willmann R, Desaki Y, Grabherr HM, Nurnberger T (2012) Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci 17:495–502PubMedCrossRefGoogle Scholar
  49. Hogenhout SA, Van der Hoorn RAL, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact 22:115–122PubMedCrossRefGoogle Scholar
  50. Houterman PM, Speijer D, Dekker HL, De Koster CG, Cornelissen BJ, Rep M (2007) The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol Plant Pathol 8:215–221PubMedCrossRefGoogle Scholar
  51. Houterman PM, Cornelissen BJ, Rep M (2008) Suppression of plant resistance gene-based immunity by a fungal effector. PLoS Pathog 4:e1000061PubMedPubMedCentralCrossRefGoogle Scholar
  52. Houterman PM, Ma L, van Ooijen G, de Vroomen MJ, Cornelissen BJ, Takken FL, Rep M (2009) The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly. Plant J 58:970–978PubMedCrossRefGoogle Scholar
  53. Hu Z, Parekh U, Maruta N, Trusov Y, Botella JR (2015) Down-regulation of Fusarium oxysporum endogenous genes by host-delivered RNA interference enhances disease resistance. Front Chem 3:1PubMedPubMedCentralCrossRefGoogle Scholar
  54. Huang X, Liu L, Wen T, Zhu R, Zhang J, Cai Z (2015) Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f.sp. cubense infected soil during and after reductive soil disinfestation. Microbiol Res 181:33–42PubMedCrossRefGoogle Scholar
  55. Imazaki I, Kurahashi M, Iida Y, Tsuge T (2007) Fow2, a Zn(II)2Cys6-type transcription regulator, controls plant infection of the vascular wilt fungus Fusarium oxysporum. Mol Microbiol 63:737–753PubMedCrossRefGoogle Scholar
  56. Jabeen N, Chaudhary Z, Gulfraz M, Rashid H, Mirza B (2015) Expression of rice chitinase gene in genetically engineered tomato confers enhanced resistance to Fusarium wilt and early blight. Plant Pathol J 31:252–258PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jain S, Akiyama K, Mae K, Ohguchi T, Takata R (2002) Targeted disruption of a G protein alpha subunit gene results in reduced pathogenicity in Fusarium oxysporum. Curr Genet 41:407–413PubMedCrossRefGoogle Scholar
  58. Jain S, Akiyama K, Kan T, Ohguchi T, Takata R (2003) The G protein beta subunit FGB1 regulates development and pathogenicity in Fusarium oxysporum. Curr Genet 43:79–86PubMedGoogle Scholar
  59. Jain S, Akiyama K, Takata R, Ohguchi T (2005) Signaling via the G protein α subunit FGA2 is necessary for pathogenesis in Fusarium oxysporum. FEMS Microbiol Lett 243:165–172PubMedCrossRefGoogle Scholar
  60. Jimenez-Gasco MM, Navas-Cortes JA, Jimenez-Diaz RM (2004) The Fusarium oxysporum f. sp. ciceris/Cicer arietinum pathosystem: a case study of the evolution of plant-pathogenic fungi into races and pathotypes. Int Microbiol 7:95–104PubMedGoogle Scholar
  61. Jonkers W, Rep M (2009) Mutation of CRE1 in Fusarium oxysporum reverts the pathogenicity defects of the FRP1 deletion mutant. Mol Microbiol 74:1100–1113PubMedCrossRefGoogle Scholar
  62. Joobeur T, King JJ, Nolin SJ, Thomas CE, Dean RA (2004) The Fusarium wilt resistance locus FOM-2 of melon contains a single resistance gene with complex features. Plant J 39:283–297PubMedCrossRefGoogle Scholar
  63. Karimi Jashni M, Dols IH, Iida Y, Boeren S, Beenen HG, Mehabi R, Collemare J, De Wit PJ (2015) Synergistic action of serine- and metallo-proteases from Fusarium oxysporum f. sp. lycopersici cleaves chitin-binding tomato chitinases, reduces their antifungal activity and enhances fungal virulence. Mol Plant Microbe Interact 28(9):996–1008CrossRefGoogle Scholar
  64. Kidd BN, Edgar CI, Kumar KK, Aitken EA, Schenk PM, Manners JM, Kazan K (2009) The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell 21:2237–2252PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kidd BN, Kadoo NY, Dombrecht B, Tekeoglu M, Gardiner DM, Thatcher LF, Aitken EA, Schenk PM, Manners JM, Kazan K (2011) Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis. Mol Plant Microbe Interact 24:733–748PubMedCrossRefGoogle Scholar
  66. Kombrink A, Thomma BPHJ (2013) LysM effectors: secreted proteins supporting fungal life. PLoS Pathog 9:e1003769PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52:427–451PubMedCrossRefGoogle Scholar
  68. Kumar Y, Dholakia BB, Panigrahi P, Kadoo NY, Giri AP, Gupta VS (2015) Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways. Phytochemistry 116:120–129PubMedCrossRefGoogle Scholar
  69. Laurence MH, Summerell BA, Liew ECY (2015) Fusarium oxysporum f. sp. canariensis: evidence for horizontal gene transfer of putative pathogenicity genes. Plant Pathol 5:1068–1075CrossRefGoogle Scholar
  70. Li CY, Deng GM, Yang J, Viljoen A, Jin Y, Kuang RB, Zuo CW, Lv ZC, Yang QS, Sheng O, Wei YR, Hu CH, Dong T, Yi GJ (2012) Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics 13:374PubMedPubMedCentralCrossRefGoogle Scholar
  71. Li C, Shao J, Wang Y, Li W, Guo D, Yan B, Xia Y, Peng M (2013a) Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and tropical race 4 of Fusarium oxysporum f. sp. cubense. BMC Genomics 14:851PubMedPubMedCentralCrossRefGoogle Scholar
  72. Li X, Bai T, Li Y, Ruan X, Li H (2013b) Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4-inoculated response to Fusarium wilts in the banana root cells. Proteome Sci 11:41PubMedPubMedCentralCrossRefGoogle Scholar
  73. Li E, Wang G, Yang Y, Xiao J, Mao Z, Xie B (2015) Microscopic analysis of the compatible and incompatible interactions between Fusarium oxysporum f. sp. conglutinans and cabbage. Eur J Plant Pathol 141:597–609CrossRefGoogle Scholar
  74. Lichtenzveig J, Anderson J, Thomas G, Oliver R, Singh K (2006) Inoculation and growth with soil borne pathogenic fungi. In: Mathesius U, Journet EP, Sumner LW (eds) The Medicago truncatula handbook. Samuel Roberts Noble Foundation, Ardmore, OKGoogle Scholar
  75. Lievens B, Houterman PM, Rep M (2009) Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiol Lett 300(2):201–215PubMedCrossRefGoogle Scholar
  76. Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R (2015) Fungal effectors and plant susceptibility. Ann Rev Plant Biol 66:513–545CrossRefGoogle Scholar
  77. Lyons R, Stiller J, Powell J, Rusu A, Manners JM, Kazan K (2015a) Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLoS One 10(4):e0121902PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lyons R, Rusu A, Stiller J, Powell J, Manners JM, Kazan K (2015b) Investigating the association between flowering time and defense in the Arabidopsis thaliana-Fusarium oxysporum interaction. PLoS One 10:e0127699PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ma L-J (2014) Horizontal chromosome transfer and rational strategies to manage Fusarium vascular wilt diseases. Mol Plant Pathol 15:763–766PubMedCrossRefGoogle Scholar
  80. Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim W-B, Woloshuk C, Xie X, Xu J-R, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee Y-H, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park S-Y, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373PubMedPubMedCentralCrossRefGoogle Scholar
  81. Ma L, Houterman PM, Gawehns F, Cao L, Sillo F, Richter H, Clavijo-Ortiz MJ, Schmidt SM, Boeren S, Vervoort J, Cornelissen BJC, Rep M, Takken FLW (2015) The AVR2–SIX5 gene pair is required to activate I-2-mediated immunity in tomato. New Phytol 208(2):507–518. doi: 10.1111/nph.13455 PubMedCrossRefGoogle Scholar
  82. Mahdavi F, Sariah M, Maziah M (2012) Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to fusarium wilt. Appl Biochem Biotechnol 166:1008–1019PubMedCrossRefGoogle Scholar
  83. Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61PubMedCrossRefGoogle Scholar
  84. Mazzeo MF, Cacace G, Ferriello F, Puopolo G, Zoina A, Ercolano MR, Siciliano RA (2014) Proteomic investigation of response to FORL infection in tomato roots. Plant Physiol Biochem 74:42–49PubMedCrossRefGoogle Scholar
  85. McFadden HG, Wilson IW, Chapple RM, Dowd C (2006) Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) genes expressed during infection of cotton (Gossypium hirsutum) dagger. Mol Plant Pathol 7:87–101PubMedCrossRefGoogle Scholar
  86. McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139:949–959PubMedPubMedCentralCrossRefGoogle Scholar
  87. Meldrum RA, Fraser-Smith S, Tran-Nguyen LTT, Daly AM, Aitken EAB (2012) Presence of putative pathogenicity genes in isolates of Fusarium oxysporum f. sp. cubense from Australia. Australas Plant Pathol 41:551–557CrossRefGoogle Scholar
  88. Mes JJ, van Doorn AA, Wijbrandi J, Simons G, Cornelissen BJ, Haring MA (2000) Expression of the Fusarium resistance gene I-2 colocalizes with the site of fungal containment. Plant J 23:183–193PubMedCrossRefGoogle Scholar
  89. Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311–324PubMedCrossRefGoogle Scholar
  90. Michielse CB, van Wijk R, Reijnen L, Manders EM, Boas S, Olivain C, Alabouvette C, Rep M (2009a) The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLoS Pathog 5(10):e1000637. doi: 10.1371/journal.ppat.1000637 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Michielse CB, van Wijk R, Reijnen L, Cornelissen BJ, Rep M (2009b) Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol 10(1):R4. doi: 10.1186/gb-2009-10-1-r4 PubMedPubMedCentralCrossRefGoogle Scholar
  92. O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A 95:2044–2049PubMedPubMedCentralCrossRefGoogle Scholar
  93. Olivain C, Humbert C, Nahalkova J, Fatehi J, L’Haridon F, Alabouvette C (2006) Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. App Environ Microbiol 72:1523–1531CrossRefGoogle Scholar
  94. Onate-Sanchez L, Anderson JP, Young J, Singh KB (2007) AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol 143:400–409PubMedPubMedCentralCrossRefGoogle Scholar
  95. Oome S et al (2014) Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc Natl Acad Sci U S A 111(47):16955–16960. doi: 10.1073/pnas.1410031111 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Paul JY, Becker DK, Dickman MB, Harding RM, Khanna HK, Dale JL (2011) Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnol J 9:1141–1148PubMedCrossRefGoogle Scholar
  97. Pemberton CL, Salmond GP (2004) The Nep1-like proteins-a growing family of microbial elicitors of plant necrosis. Mol Plant Pathol 5:353–359PubMedCrossRefGoogle Scholar
  98. Perez-Nadales E, Almeida Nogueira MF, Baldin C, Castanheira S, El Ghalid M, Grund E, Lengeler K, Marchegiani E, Mehrotra PV, Moretti M, Naik V, Oses-Ruiz M, Oskarsson T, Schäfer K, Wasserstrom L, Brakhage AA, Gow NAR, Kahmann R, Lebrun M-H, Perez-Martin J, Di Pietro A, Talbot NJ, Toquin V, Walther A, Wendland J (2014) Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 70:42–67PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ploetz R (2015) Fusarium wilt of banana. Phytopathology 105(12):1512–1521PubMedCrossRefGoogle Scholar
  100. Pusztahelyi T, Holb IJ, Pócsi I (2015) Secondary metabolites in fungus-plant interactions. Front Plant Sci 6:573. doi: 10.3389/fpls.2015.00573 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Ramírez-Suero M, Khanshour A, Martinez Y, Rickauer M (2010) A study on the susceptibility of the model legume plant Medicago truncatula to the soil-borne pathogen Fusarium oxysporum. Eur J Plant Pathol 126:517–530CrossRefGoogle Scholar
  102. Recorbet G, Steinberg C, Olivain C, Edel V, Trouvelot S, Dumas-Gaudot E, Gianinazzi S, Alabouvette C (2003) Wanted: pathogenesis-related marker molecules for Fusarium oxysporum. New Phytol 159:73–92CrossRefGoogle Scholar
  103. Rep M (2005) Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiol Lett 253:19–27PubMedCrossRefGoogle Scholar
  104. Rep M, Kistler HC (2010) The genomic organization of plant pathogenicity in Fusarium species. Curr Opin Plant Biol 13:420–426PubMedCrossRefGoogle Scholar
  105. Rep M, van der Does HC, Meijer M, van Wijk R, Houterman PM, Dekker HL, de Koster CG, Cornelissen BJ (2004) A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Mol Microbiol 53:1373–1383PubMedCrossRefGoogle Scholar
  106. Rep M, Meijer M, Houterman PM, van der Does HC, Cornelissen BJ (2005) Fusarium oxysporum evades I-3-mediated resistance without altering the matching avirulence gene. Mol Plant Microbe Interact 18:15–23PubMedCrossRefGoogle Scholar
  107. Rep M, Schmidt S, van Dam P, de Sain M, Vlaardingerbroek I, Shahi S, Widinugraheni S, Fokkens L, Tintor N, Beerens B, Houterman P, van der Does C (2015) Effectors of Fusarium oxysporum: identification, function, evolution and regulation of gene expression. Fungal Genetics Reports 61S.
  108. Rispail N, Bani M, Rubiales D (2015) Resistance reaction of Medicago truncatula genotypes to Fusarium oxysporum: effect of plant age, substrate and inoculation method. Crop Pasture Sci 66:506–515CrossRefGoogle Scholar
  109. Roncero MIG, Hera C, Ruiz-Rubio M, Garcıa Maceira FI, Madrid MP, Caracuel Z, Calero F, Delgado-Jarana J, Roldán R, Guez R, Martınez-Rocha AL, Velasco C, Roa J, Martın-Urdiroz M, Córdoba D, Di Pietro A (2003) Fusarium as a model for studying virulence in soilborne plant pathogens. Physiol Mol Plant Pathol 62:87–98CrossRefGoogle Scholar
  110. Ruiz GB, Di Pietro A, Roncero MIG (2015) Combined action of the major secreted exo- and endopolygalacturonase is required for full virulence of Fusarium oxysporum. Mol Plant Pathol. doi: 10.1111/mpp.12283 Google Scholar
  111. Sarfatti M, Abu-Abied M, Katan J, Zamir D (1991) RFLP mapping of I-1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theor Appl Genet 82:22–26PubMedCrossRefGoogle Scholar
  112. Schmidt SM, Houterman PM, Schreiver I, Ma L, Amyotte S, Chellappan B, Boeren S, Takken FL, Rep M (2013) MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics 14(1):119PubMedPubMedCentralCrossRefGoogle Scholar
  113. Schmidt SM, Lukasiewicz J, Farrer R, van Dam P, Bertoldo C, Rep M (2016) Comparative genomics of Fusarium oxysporum f. sp. melonis reveals the secreted protein recognized by the Fom-2 resistance gene in melon. New Phytol 209:307–318PubMedCrossRefGoogle Scholar
  114. Sharma M, Nagavardhini A, Thudi M, Ghosh R, Pande S, Varshney RK (2014) Development of DArT markers and assessment of diversity in Fusarium oxysporum f. sp. ciceris, wilt pathogen of chickpea (Cicer arietinum L.). BMC Genomics 15:454. doi: 10.1186/1471-2164-15-454 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Shen Y, Diener AC (2013) Arabidopsis thaliana RESISTANCE TO FUSARIUM OXYSPORUM 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLoS Genet 9(5):e1003525. doi: 10.1371/journal.pgen.1003525 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Shimizu M, Fujimoto R, Ying H, Z-j P, Ebe Y, Kawanabe T, Saeki N, Taylor J, Kaji M, Dennis E, Okazaki K (2014) Identification of candidate genes for fusarium yellows resistance in Chinese cabbage by differential expression analysis. Plant Mol Biol 85:247–257PubMedCrossRefGoogle Scholar
  117. Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, Diergaarde P, van der Lee T, Bleeker M, Onstenk J, de Both M et al (1998) Dissection of the Fusarium I-2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068PubMedPubMedCentralCrossRefGoogle Scholar
  118. Sperschneider J, Gardiner DM, Thatcher LF, Lyons R, Singh KB, Manners JM, Taylor JM (2015) Genome-wide analysis in three Fusarium pathogens identifies rapidly evolving chromosomes and genes associated with pathogenicity. Genome Biol Evol 7:1613–1627PubMedPubMedCentralCrossRefGoogle Scholar
  119. Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263PubMedCrossRefGoogle Scholar
  120. Sun Y, Yi X, Peng M, Zeng H, Wang D, Li B, Tong Z, Chang L, Jin X, Wang X (2014) Proteomics of Fusarium oxysporum race 1 and race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt. PLoS One 9:e113818PubMedPubMedCentralCrossRefGoogle Scholar
  121. Swarupa V, Ravishankar KV, Rekha A (2014) Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta 239:735–751PubMedCrossRefGoogle Scholar
  122. Takken F, Rep M (2010) The arms race between tomato and Fusarium oxysporum. Mol Plant Pathol 11:309–314PubMedCrossRefGoogle Scholar
  123. Thatcher LF, Manners JM, Kazan K (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J 58:927–939PubMedCrossRefGoogle Scholar
  124. Thatcher LF, Gardiner DM, Kazan K, Manners JM (2012a) A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis. Mol Plant Microbe Interact 25:180–190PubMedCrossRefGoogle Scholar
  125. Thatcher LF, Powell JJ, Aitken EA, Kazan K, Manners JM (2012b) The lateral organ boundaries domain transcription factor LBD20 functions in Fusarium wilt Susceptibility and jasmonate signaling in Arabidopsis. Plant Physiol 160:407–418PubMedPubMedCentralCrossRefGoogle Scholar
  126. Thatcher LF, Kamphuis LG, Hane JK, Oñate-Sánchez L, Singh KB (2015) The Arabidopsis KH-domain RNA-binding protein ESR1 functions in components of jasmonate signalling, unlinking growth restraint and resistance to stress. PLoS One 10:e0126978PubMedPubMedCentralCrossRefGoogle Scholar
  127. Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23:4–15PubMedPubMedCentralCrossRefGoogle Scholar
  128. Trapero-Casas A, Jiménez-Díaz RM (1985) Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathology 75:146–1151Google Scholar
  129. Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk PM, Botella JR (2009) Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. Plant J 58:69–81PubMedCrossRefGoogle Scholar
  130. van der Does HC, Rep M (2007) Virulence genes and the evolution of host specificity in plant-pathogenic fungi. Mol Plant Microbe Interact 20:1175–1182PubMedCrossRefGoogle Scholar
  131. van der Does HC, Duyvesteijn RG, Goltstein PM, van Schie CC, Manders EM, Cornelissen BJ, Rep M (2008) Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genet Biol 45:1257–1264PubMedCrossRefGoogle Scholar
  132. van Schie CCN, Takken FLW (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52:551–581PubMedCrossRefGoogle Scholar
  133. Wang Z, Zhang J, Jia C, Liu J, Li Y, Yin X, Xu B, Jin Z (2012) De novo characterization of the banana root transcriptome and analysis of gene expression under Fusarium oxysporum f. sp. Cubense tropical race 4 infection. BMC Genomics 13:650PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wang M, Sun Y, Sun G, Liu X, Zhai L, Shen Q, Guo S (2015) Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum. Sci Rep 5:7722PubMedPubMedCentralCrossRefGoogle Scholar
  135. Williams AH, Sharma M, Thatcher LF, Azam S, Hane JK, Sperschneider J, Kidd BN, Anderson JP, Ghosh R, Garg G, Lichtenzveig J, Kistler HC, Shea T, Young S, Buck SA, Kamphuis LG, Saxena R, Pande S, Ma LJ, Varshney RK, Singh KB (2016) Comparative genomics and prediction of conditionally dispensable sequences in legume-infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics 17(1):191PubMedPubMedCentralCrossRefGoogle Scholar
  136. Win J, Chaparro-Garcia A, Belhaj K, Saunders DGO, Yoshida K, Dong S, Schornack S, Zipfel C, Robatzek S, Hogenhout SA, Kamoun S (2012) Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harbor Symp Quant Biol 77:235–247PubMedCrossRefGoogle Scholar
  137. Wu Y, Yi G, Peng X, Huang B, Liu E, Zhang J (2013) Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense. J Plant Physiol 170:1039–1046PubMedCrossRefGoogle Scholar
  138. Xue R, Wu J, Zhu Z, Wang L, Wang X, Wang S, Blair MW (2015a) Differentially expressed genes in resistant and susceptible common bean (Phaseolus vulgaris L.) genotypes in response to Fusarium oxysporum f. sp. phaseoli. PLoS One 10:e0127698PubMedPubMedCentralCrossRefGoogle Scholar
  139. Xue C, Penton CR, Shen Z, Zhang R, Huang Q, Li R, Ruan Y, Shen Q (2015b) Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci Rep 5:11124. doi: 10.1038/srep11124 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Yadeta K, Thomma B (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4:97. doi: 10.3389/fpls.2013.00097 PubMedPubMedCentralGoogle Scholar
  141. Zhao Z, Liu H, Wang C, Xu JR (2013) Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics 14:274PubMedPubMedCentralCrossRefGoogle Scholar
  142. Zhu QH, Stephen S, Kazan K, Jin G, Fan L, Taylor J, Dennis ES, Helliwell CA, Wang MB (2013) Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene 512:259–266PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Louise F. Thatcher
    • 1
  • Brendan N. Kidd
    • 1
  • Kemal Kazan
    • 2
    • 3
  1. 1.Centre for Environment and Life SciencesCommonwealth Scientific and Industrial Research Organization AgricultureWembleyAustralia
  2. 2.Queensland Bioscience PrecinctCSIRO AgricultureSt. LuciaAustralia
  3. 3.The Queensland Alliance for Agriculture & Food Innovation (QAAFI), Queensland Bioscience PrecinctThe University of QueenslandBrisbaneAustralia

Personalised recommendations