AXIOM: A Flexible Platform for the Smart Home

  • Roberto Giorgi
  • Nicola Bettin
  • Paolo Gai
  • Xavier Martorell
  • Antonio Rizzo
Chapter

Abstract

The AXIOM hardware/software platform aims at bringing easy programmability on top of a cluster of processors by using a fast interconnect and FPGA as a basis for building a scalable embedded system. The Smart Home is one of the key scenarios in which AXIOM could be useful for the Internet-of-Things (IoT). In Smart Homes, everything is linked to the flow of information that from the “on the field” devices needs to arrive to the cloud servers. The information sensed in the environment will not be transmitted as is to the higher layers, but is somehow interpreted to provide a synthetic light-weight representation of the environment. In such a scenario, it is then clear that there is a need for peripheral nodes as well as intermediate gateways which needs to be able to perform high-performance computational loads. AXIOM provides the possibility of designing a cluster of low-power/low-budget boards, which could be packed inside a “high-performance embedded low-cost product.” The AXIOM boards are heterogeneous, thus allowing for even greater diversity which is needed in those kind of IoT scenarios. The cluster itself can then be integrated inside the IoT architectures as “computational-power node,” which could be the center of a distributed intelligence near the edges of the IoT network.

Keywords

Smart Home Cyber-physical systems Reconfigurable systems Programming model Internet of things 

References

  1. 1.
    W. Ahmed, M. Shafique, L. Bauer, J. Karlsruhe, Adaptive resource management for simultaneous multitasking in mixed-grained reconfigurable multi-core processors, in 2011 Proceedings of the 9th International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 365–374 (2011)Google Scholar
  2. 2.
    C. Alvarez et al., The AXIOM software layers, in Digital System Design (DSD) (2015)Google Scholar
  3. 3.
    E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, D. Ortega, COTSon: infrastructure for full system simulation. SIGOPS Oper. Syst. Rev. 43 (1), 52–61 (2009). doi:http://doi.acm.org/10.1145/1496909.1496921
  4. 4.
    E. Ayguade, R.M. Badia, D. Cabrera, A. Duran, M. Gonzalez, F. Igual, D. Jimenez, J. Labarta, X. Martorell, R. Mayo, J.M. Perez, E.S. Quintana-Orti, A proposal to extend the openmp tasking model for heterogeneous architectures, in International Workshop on OpenMP (IWOMP), vol. 5568, pp. 154–167 (2009)Google Scholar
  5. 5.
    M. Banzi, Getting Started with Arduino (Make Books - Imprint of: O’Reilly Media, Sebastopol, CA, 2008)Google Scholar
  6. 6.
    J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. Badia, E. Ayguade, J. Labarta, Productive cluster programming with OmpSs, in Euro-Par 2011 Parallel Processing, pp. 555–566 (2011)Google Scholar
  7. 7.
    J. Clemente, V. Rana, D. Sciuto, I. Beretta, D. Atienza, A hybrid mapping-scheduling technique for dynamically reconfigurable hardware, in 2011 International Conference on Field Programmable Logic and Applications (FPL), pp. 177–180 (2011). doi:10.1109/FPL.2011.40Google Scholar
  8. 8.
    D.J. Cook, A.S. Crandall, B.L. Thomas, N.C. Krishnan, CASAS: a smart home in a box. Computer 46 (7), 62–69 (2013). doi:http://doi.ieeecomputersociety.org/10.1109/MC.2012.328
  9. 9.
    R. Ferrer, S. Royuela, D. Caballero, A. Duran, X. Martorell, E. Ayguade, Mercurium: Design decisions for a S2S compiler, in Proceedings of the Cetus Users and Compiler Infrastructure Workshop in conjunction with PACT (2011)Google Scholar
  10. 10.
    R. Giorgi, Accelerating haskell on a dataflow architecture: a case study including transactional memory, in Computer Engineering and Applications (CEA), pp. 91–100 (2015)Google Scholar
  11. 11.
    R. Giorgi, Scalable embedded systems: towards the convergence of high-performance and embedded computing, in Proceedings of the 13th IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC 2015) (2015)Google Scholar
  12. 12.
    R. Giorgi, P. Faraboschi, An introduction to DF-Threads and their execution model, in IEEE MPP, pp. 60–65 (2014). doi:10.1109/SBAC-PADW.2014.30Google Scholar
  13. 13.
    R. Giorgi, A. Scionti, A scalable thread scheduling co-processor based on data-flow principles. ELSEVIER Futur. Gener. Comput. Syst. 53, 100–108 (2015). doi:10.1016/j.future. 2014.12.014. http://www.sciencedirect.com/science/article/pii/S0167739X1400274X CrossRefGoogle Scholar
  14. 14.
    R. Giorgi et al., TERAFLUX: harnessing dataflow in next generation teradevices. Microprocess. Microsyst. 38 (8, Part B), 976–990 (2014)Google Scholar
  15. 15.
    M. Herlihy, J.E.B. Moss, Transactional memory: architectural support for lock-free data structures, in Proceedings of the 20th Annual International Symposium on Computer Architecture, ISCA ’93 (ACM, New York, 1993), pp. 289–300. doi:10.1145/165123.165164Google Scholar
  16. 16.
    Intel: Could Smart Homes Be as Commonplace as Smartphones by 2025. http://download.intel.com/newsroom/kits/iot/pdfs/IntelSmartHomeSurveyBackgrounder.pdf. Last accessed on Feb 2016
  17. 17.
    N. Komninos, E. Philippou, A. Pitsillides, Survey in smart grid and smart home security: issues, challenges and countermeasures. IEEE Commun. Surv. Tutor. 16 (4), 1933–1954 (2014). doi:10.1109/COMST.2014.2320093CrossRefGoogle Scholar
  18. 18.
    S. Lyberis, G. Kalokerinos, M. Lygerakis, V. Papaefstathiou, D. Tsaliagkos, M. Katevenis, D. Pnevmatikatos, D. Nikolopoulos, Formic: cost-efficient and scalable prototyping of manycore architectures, in 2012 IEEE 20th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM) (IEEE, New York, 2012), pp. 61–64CrossRefGoogle Scholar
  19. 19.
    E. Palazzetti, Getting Started with UDOO (Packt Publishing, Birmingham, 2015)Google Scholar
  20. 20.
    V. Pillet, J. Labarta, T. Cortes, S. Girona, PARAVER: a tool to visualise and analyze parallel code, in Proceedings of WoTUG-18: Transputer and Occam Developments (1995) Google Scholar
  21. 21.
    N. Puzovic, S. McKee, R. Eres, A. Zaks, P. Gai, S. Wong, R. Giorgi, A multi-pronged approach to benchmark characterization, in IEEE CLUSTER, pp. 1–4 (2010). doi:10.1109/ CLUSTERWKSP.2010.5613090Google Scholar
  22. 22.
    S. Ray, Y. Jin, A. Raychowdhury, The changing computing paradigm with internet of things: a tutorial introduction. IEEE Des. Test 33 (2), 76–96 (2016). doi:10.1109/MDAT.2016.2526612CrossRefGoogle Scholar
  23. 23.
    A. Scionti, S. Kavvadias, R. Giorgi, Dynamic power reduction in self-adaptive embedded systems through benchmark analysis, in IEEE Mediterranean Conference on Embedded Computing (MECO), pp. 62–65 (2014)Google Scholar
  24. 24.
    D. Theodoropoulos et al., The AXIOM project (agile, extensible, fast I/O module), in SAMOS (2015)Google Scholar
  25. 25.
    O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, I.S. Jubert, M. Mazura, M. Harrison et al. Internet of things strategic research roadmap, in Internet of Things-Global Technological and Societal Trends, pp. 9–52 (2011)Google Scholar
  26. 26.
    S. Weis, A. Garbade, J. Wolf, B. Fechner, A. Mendelson, R. Giorgi, T. Ungerer, A fault detection and recovery architecture for a teradevice dataflow system, in, IEEE Design for Manufacturability (DFM), pp. 38–44 (2011)Google Scholar
  27. 27.
    S. Weis et al., Architectural support for fault tolerance in a teradevice dataflow system. Springer Int. J. Parallel Prog. 44 (2), 208–232 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Xilinx Inc.: Xilinx UltraScale Architecture, http://www.xilinx.com/support/documentation/white_papers/wp435-Xilinx-UltraScale.pdf. Last accessed on Feb 2016
  29. 29.

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Roberto Giorgi
    • 1
  • Nicola Bettin
    • 2
  • Paolo Gai
    • 3
  • Xavier Martorell
    • 4
  • Antonio Rizzo
    • 5
  1. 1.Department of Information Engineering and MathematicsUniversity of SienaSienaItaly
  2. 2.VIMAR SpAMarosticaItaly
  3. 3.Evidence SrLPisaItaly
  4. 4.Computer Architecture DepartmentBarcelona Supercomputing CenterBarcelonaSpain
  5. 5.Department of Cognitive SciencesSienaItaly

Personalised recommendations