High-Frequency Trading Strategy Based on Deep Neural Networks

  • Andrés Arévalo
  • Jaime Niño
  • German Hernández
  • Javier Sandoval
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9773)


This paper presents a high-frequency strategy based on Deep Neural Networks (DNNs). The DNN was trained on current time (hour and minute), and \( n \)-lagged one-minute pseudo-returns, price standard deviations and trend indicators in order to forecast the next one-minute average price. The DNN predictions are used to build a high-frequency trading strategy that buys (sells) when the next predicted average price is above (below) the last closing price. The data used for training and testing are the AAPL tick-by-tick transactions from September to November of 2008. The best-found DNN has a 66 % of directional accuracy. This strategy yields an 81 % successful trades during testing period.


Computational finance High-frequency trading Deep neural networks 


  1. 1.
    Arora, A., et al.: Deep Learning with H2O (2015)Google Scholar
  2. 2.
    Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006)CrossRefGoogle Scholar
  4. 4.
    Härdle, W., et al.: Applied Quantitative Finance: Theory and Computational Tools. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Hinton, G.E., et al.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Intercontinental Exchange Inc.: TAQ NYSE Trades (2016).
  7. 7.
    Kaastra, I., Boyd, M.: Designing a neural network for forecasting financial and economic time series. Neurocomputing 10(3), 215–236 (1996)CrossRefGoogle Scholar
  8. 8.
    Li, X., et al.: Enhancing quantitative intra-day stock return prediction by integrating both market news and stock prices information. Neurocomputing 142, 228–238 (2014)CrossRefGoogle Scholar
  9. 9.
    Marszałek, A., Burczyński, T.: Modeling and forecasting financial time series with ordered fuzzy candlesticks. Inf. Sci. (Ny) 273, 144–155 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mills, T., Markellos, R.: The econometric modelling of financial time series (2008)Google Scholar
  11. 11.
    Murphy, J.J.: Technical Analysis of the Financial Markets: A Comprehensive Guide to Trading Methods and Applications. Penguin, New York (1999)Google Scholar
  12. 12.
    Nusca, A., et al.: Arno Candel, physicist and hacker, 0xdata. Meet Fortune’s 2014 Big Data All-Stars (2014)Google Scholar
  13. 13.
    Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: IEEE International Conference on Neural Networks, pp. 586–591. IEEE (1993)Google Scholar
  14. 14.
    Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Netw. 61, 85–117 (2014)CrossRefGoogle Scholar
  15. 15.
    Takeuchi, L., Lee, Y.: Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks.
  16. 16.
    Trippi, R.R., Turban, E.: Neural Networks in Finance and Investing: Using Artificial Intelligence to Improve Real World Performance. Probus Publishing Company, Chicago (1992)Google Scholar
  17. 17.
    Tsay, R.S.: Analysis of Financial Time Series. Wiley, New York (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    Yeh, S., et al.: Corporate Default Prediction via Deep Learning (2014)Google Scholar
  19. 19.
    Pham, D.-N., Park, S.-B. (eds.): PRICAI 2014. LNCS, vol. 8862. Springer, Heidelberg (2014)Google Scholar
  20. 20.
    Zeiler, M.D.: ADADELTA: An Adaptive Learning Rate Method, 6 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andrés Arévalo
    • 1
  • Jaime Niño
    • 1
  • German Hernández
    • 1
  • Javier Sandoval
    • 2
  1. 1.Universidad Nacional de ColombiaBogotáColombia
  2. 2.Algocodex Research InstituteUniversidad ExternadoBogotáColombia

Personalised recommendations