A Novel Clustering Algorithm for Large-Scale Graph Processing

  • Zhaoyang Qu
  • Wei Ding
  • Nan Qu
  • Jia Yan
  • Ling WangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9773)


The most important issue of big data processing is the relevance of analytical data; thought of this paper is to analyze the data as a graph optimal partitioning problem. Computing all circuit graphics firstly, calculated frequent map and redrawing of the system structure according to the results, the core problem is the time complexity of the algorithm. To solve this problem, researching DEMIX algorithm in non-strongly connected graph and study on relationship between frequent node and adjacency matrix which is strongly connected branches. Gives the corresponding examples, and analyzes the algorithm complexity. On the time complexity of the proposed method DEMIX is retrieving effect faster, more accurate search results.


Large data DEMIX algorithm Graph 



This work is supported by the development of National Natural Science Foundation Project (No. 51277023), by the Jilin Province plans to emphasis transformation projects (No. 20140307008GX), and by the Education Department Foundation of Jilin Province (No. 201698).


  1. 1.
    Elseidy, M., Abdelhamid, E., Skiadopoulos, S.: GraMi: frequent subgraph and pattern mining in a single large graph. Proc. VLDB Endow. 7(7), 517–528 (2014)CrossRefGoogle Scholar
  2. 2.
    Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities. Proc. VLDB Endow. 2(1), 718–729 (2010)CrossRefGoogle Scholar
  3. 3.
    Zhao, F., Tung, A.K.H.: Large scale cohesive subgraphs discovery for social network visual analysis. Proc. VLDB Endow. 6(2), 85–96 (2012)CrossRefGoogle Scholar
  4. 4.
    Martinez, C.: Intelligent real-time tools and visualizations for wide-area electrical grid reliability management, pp. 1–4 (2008)Google Scholar
  5. 5.
    Zhang, Y., Zhang, H., Lu, C.: Study on parameter optimization design of drum brake based on hybrid cellular multiobjective genetic algorithm. Math. Probl. Eng. 2012(1), 1–18 (2012)zbMATHGoogle Scholar
  6. 6.
    Miyake, Y., Tanaka, K., Okubo, H.: Seaweed consumption and prevalence of depressive symptoms during pregnancy in Japan: baseline data from the Kyushu Okinawa maternal and child health study. BMC Pregnancy Childbirth 14(5), 572–578 (2014)Google Scholar
  7. 7.
    Williams, M., Wallis, S., Komatsu, T.: Dragons, brimstone and the geology of a volcanic arc on the island of the last Samurai, Kyushu, Japan. Geol. Today 32(1), 21–26 (2016)CrossRefGoogle Scholar
  8. 8.
    Li, Y., Liu, Z., Zhu, H.: Enterprise search in the big data era: recent developments and open challenges. Proc. VLDB Endow. 7(13), 1717–1718 (2014)CrossRefGoogle Scholar
  9. 9.
    Agarwal, M.K., Ramamritham, K., Bhide, M.: Real time discovery of dense clusters in highly dynamic graphs: identifying real world events in highly dynamic environments. Proc. VLDB Endow. 5(10), 980–991 (2012)CrossRefGoogle Scholar
  10. 10.
    Gupta, P., Satuluri, V., Grewal, A., et al.: Real-time twitter recommendation: online motif detection in large dynamic graphs. Proc. VLDB Endow. 7(13), 1379–1380 (2014)CrossRefGoogle Scholar
  11. 11.
    Pavan, A., Tangwongsan, K., Tirthapura, S., et al.: Counting and sampling triangles from a graph stream. Proc. VLDB Endow. 6(14), 1870–1881 (2013)CrossRefGoogle Scholar
  12. 12.
    Budak, C., Georgiou, T., Agrawal, D., et al.: Geoscope: online detection of geo-correlated information trends in social networks. Proc. VLDB Endow. 7(4), 229–240 (2013)CrossRefGoogle Scholar
  13. 13.
    Wu, X., Zhu, X., Wu, G.Q., et al.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26(1), 97–107 (2014)CrossRefGoogle Scholar
  14. 14.
    Cohen, J., Dolan, B., Dunlap, M., et al.: MAD skills: new analysis practices for big data. Proceedings VLDB Endow. 2(2), 1481–1492 (2009)CrossRefGoogle Scholar
  15. 15.
    Agarwal, M.K., Ramamritham, K., Bhide, M.: Real time discovery of dense clusters in highly dynamic graphs: identifying real world events in highly dynamic environments. Proc. VLDB Endow. 5(10), 980–991 (2012)CrossRefGoogle Scholar
  16. 16.
    Kim, Y., Moon, J., Lee, H.-J., Bae, C.-S.: Knowledge Digest Engine for Personal Bigdata Analysis. In: Park, J.H(., Jin, Q., Yeo, MS.-s., Hu, B. (eds.) Human Centric Technology and Service in Smart Space. LNEE, vol. 182, pp. 261–267. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97(97), 1090–1098 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Valente, T.W.: Social network thresholds in the diffusion of innovations. Soc. Netw. 18(1), 69–89 (1996)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, W., Yang, J.: Mining sequential patterns from large data sets. Adv. Database Syst. 28(7), 3–14 (2013)Google Scholar
  20. 20.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Zhaoyang Qu
    • 1
  • Wei Ding
    • 1
  • Nan Qu
    • 2
  • Jia Yan
    • 3
  • Ling Wang
    • 1
    Email author
  1. 1.Department of Computer Technology, School of Information EngineeringNortheast Dianli UniversityJilinChina
  2. 2.The Jiangsu Province electric power overhauls companySuzhouChina
  3. 3.State Grid Jilin Electric Power Co. Ltd.ChangchunChina

Personalised recommendations