Advertisement

A Hybrid Scatter Search Algorithm to Solve the Capacitated Arc Routing Problem with Refill Points

  • Eduyn Ramiro López-SantanaEmail author
  • Germán Andrés Méndez-Giraldo
  • Carlos Alberto Franco-Franco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9772)

Abstract

This paper presents a hybrid scatter search algorithm to solve the capacitated arc routing problem with refill points (CARP-RP). The vehicle servicing arcs must be refilled on the spot by using a second vehicle. This problem is addressed in real-world applications in many services systems. The problem consists on simultaneously determining the vehicles routes that minimize the total cost. In the literature is proposed an integer linear programming model to solve the problem. We propose a hybrid algorithm based on Scatter Search, Simulated Annealing and Iterated Local Search. Our method is tested with instances from the literature. We found best results in the objective function for the majority instances.

Keywords

Scatter search Arc routing Hybrid algorithms Refill points Simulated annealing Iterated local search 

Notes

Acknowledgements

This work was supported in part by the Centro de Investigaciones y Desarrollo Científico at Universidad Distrital Francisco José de Caldas (Colombia) under Grant No. 2-602-468-14.

References

  1. 1.
    Assad, A.A., Golden, B.L.: Arc routing methods and applications. In: Handbooks in Operations Research and Management Science, pp. 375–483. Elsevier (1995)Google Scholar
  2. 2.
    Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11, 305–315 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Wøhlk, S.: A decade of capacitated arc routing. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges. Operations Research/Computer Science Interfaces Series, vol. 43, pp. 29–48. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Belenguer, J.-M., Benavent, E., Lacomme, P., Prins, C.: Lower and upper bounds for the mixed capacitated arc routing problem. Comput. Oper. Res. 33, 3363–3383 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lacomme, P., Prins, C., Sevaux, M.: Multiobjective capacitated arc routing problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 550–564. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Lacomme, P., Prins, C., Sevaux, M.: A genetic algorithm for a bi-objective capacitated arc routing problem. Comput. Oper. Res. 33, 3473–3493 (2006)CrossRefzbMATHGoogle Scholar
  7. 7.
    Reghioui, M., Prins, C., Labadi, N.: GRASP with path relinking for the capacitated arc routing problem with time windows. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 722–731. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Chu, F., Labadi, N., Prins, C.: A scatter search for the periodic capacitated arc routing problem. Eur. J. Oper. Res. 169, 586–605 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fleury, G., Lacomme, P., Prins, C.: Stochastic Capacitated Arc Routing Problem (2005)Google Scholar
  10. 10.
    Pia, A., Filippi, C.: A variable neighborhood descent algorithm for a real waste collection problem with mobile depots. Int. Trans. Oper. Res. 13, 125–141 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Amaya, A., Langevin, A., Trépanier, M.: The capacitated arc routing problem with refill points. Oper. Res. Lett. 35, 45–53 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Amaya, C.-A., Langevin, A., Trépanier, M.: A heuristic method for the capacitated arc routing problem with refill points and multiple loads. J. Oper. Res. Soc. 61, 1095–1103 (2010)CrossRefzbMATHGoogle Scholar
  13. 13.
    Shan, H.U., Dan, L.I.N.: Algorithms for solving CARP-RP-ML problem. Comput. Eng. 38, 168–170 (2012)Google Scholar
  14. 14.
    Hirabayashi, R., Saruwatari, Y., Nishida, N.: Tour construction algorithm for the capacitated arc routing problem. Asia Pac. J. Oper. Res. 9, 155–175 (1992)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Belenguer, J.M., Benavent, E.: A cutting plane algorithm for the capacitated arc routing problem. Comput. Oper. Res. 30, 705–728 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Baldacci, R., Maniezzo, V.: Exact methods based on node-routing formulations for undirected arc-routing problems. Networks 47, 52–60 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Longo, H., de Aragão, P.M., Uchoa, E.: Solving capacitated arc routing problems using a transformation to the CVRP. Comput. Oper. Res. 33, 1823–1837 (2006)CrossRefzbMATHGoogle Scholar
  18. 18.
    Tagmouti, M., Gendreau, M., Potvin, J.-Y.: Arc routing problems with time-dependent service costs. Eur. J. Oper. Res. 181, 30–39 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Eglese, R.W.: Routeing winter gritting vehicles. Discret. Appl. Math. 48, 231–244 (1994)CrossRefzbMATHGoogle Scholar
  20. 20.
    Hertz, A., Mittaz, M.: A variable neighborhood descent algorithm for the undirected capacitated arc routing problem. Transp. Sci. 35, 425–434 (2001)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hertz, A., Laporte, G., Mittaz, M.: A tabu search heuristic for the capacitated arc routing problem. Oper. Res. 48, 129–135 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fung, R.Y.K., Liu, R., Jiang, Z.: A memetic algorithm for the open capacitated arc routing problem. Transp. Res. Part E: Logist. Transp. Rev. 50, 53–67 (2013)CrossRefGoogle Scholar
  23. 23.
    Liu, M., Singh, H.K., Ray, T.: Application specific instance generator and a memetic algorithm for capacitated arc routing problems. Transp. Res. Part C: Emerg. Technol. 43, 249–266 (2014)CrossRefGoogle Scholar
  24. 24.
    Wang, Z., Jin, H., Tian, M.: Rank-based memetic algorithm for capacitated arc routing problems. Appl. Soft Comput. 37, 572–584 (2015)CrossRefGoogle Scholar
  25. 25.
    Beullens, P., Muyldermans, L., Cattrysse, D., Van Oudheusden, D.: A guided local search heuristic for the capacitated arc routing problem. Eur. J. Oper. Res. 147, 629–643 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Glover, F.: Heuristics for integer programming using surrogate constraints. Decis. Sci. 8, 156–166 (1977)CrossRefGoogle Scholar
  27. 27.
    Rego, C., Leão, P.: A scatter search tutorial for graph-based permutation problems. In: Sharda, R., Voß, S., Rego, C., Alidaee, B. (eds.) Metaheuristic Optimization via Memory and Evolution. Operations Research/Computer Science Interfaces Series, vol. 30, pp. 1–24. Kluwer Academic Publishers, Boston (2005)CrossRefGoogle Scholar
  28. 28.
    Russell, R.A., Chiang, W.-C.: Scatter search for the vehicle routing problem with time windows. Eur. J. Oper. Res. 169, 606–622 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Laguna, M., Martí, R., Martí, R.C.: Scatter Search: Methodology and Implementations in C. Operations Research/Computer Science Interfaces Series, vol. 1. Springer Science & Business Media, New York (2003)CrossRefzbMATHGoogle Scholar
  30. 30.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River (1993)zbMATHGoogle Scholar
  31. 31.
    Benavent, E., Campos, V., Corberan, A., Mota, E.: The capacitated arc routing problem: lower bounds. Networks 22, 669–690 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Eduyn Ramiro López-Santana
    • 1
    Email author
  • Germán Andrés Méndez-Giraldo
    • 1
  • Carlos Alberto Franco-Franco
    • 2
  1. 1.Universidad Distrital Francisco José de CaldasBogotáColombia
  2. 2.Universidad de la SabanaChía, CundinamarcaColombia

Personalised recommendations