Advertisement

Basics of Mechanics of Micropolar Shells

  • Victor EremeyevEmail author
  • Holm Altenbach
Chapter
Part of the CISM International Centre for Mechanical Sciences book series (CISM, volume 572)

Abstract

The chapter is devoted to the introduction to the nonlinear theory of micropolar shells called also six-parametric shell theory. Within the theory a shell is described as a deformable directed material surface each point of which has six degrees of freedom (DOF), i.e. three translational and three rotational DOF. In other words the shell kinematics coincides with the kinematics of a two-dimensional (2D) micropolar or Cosserat body. Here we present the basic equations of the micropolar shell theory including variational statements, compatibility conditions, etc.

Keywords

Constitutive Equation Surface Stress Strain Energy Density Reference Configuration Shell Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abeyaratne, R., & Knowles, J. K. (2006). Evolution of phase transitions: A continuum theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Agranovich, M. (1997). Elliptic boundary problems. In M. Agranovich, Y. Egorov, & M. Shubin (Eds.), Partial differential equations IX: Elliptic boundary problems (pp. 1–144)., Encyclopaedia of Mathematical Sciences, volume 79 Berlin: Springer.CrossRefGoogle Scholar
  3. Agrawal, A., & Steigmann, D. J. (2008). Coexistent fluid-phase equilibria in biomembranes with bending elasticity. The Journal of Elasticity, 93(1), 63–80.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Akay, A., Xu, Z., Carcaterra, A., & Koç, I. M. (2005). Experiments on vibration absorption using energy sinks. The Journal of the Acoustical Society of America, 118(5), 3043–3049.CrossRefGoogle Scholar
  5. Alijani, F., & Amabili, M. (2014). Non-linear vibrations of shells: A literature review from 2003 to 2013. International Journal of Non-Linear Mechanics, 58, 233–257.CrossRefGoogle Scholar
  6. Altenbach, H., & Eremeyev, V. A. (2010). On the effective stiffness of plates made of hyperelastic materials with initial stresses. International Journal of Non-Linear Mechanics, 45(10), 976–981.CrossRefGoogle Scholar
  7. Altenbach, H., & Eremeyev, V. A. (2011a) Mechanics of viscoelastic plates made of FGMs. In J. Murín, V. Kompiš, & V. Kutiš (Eds.), Computational modelling and advanced simulations (pp. 33–48), volume 24 of Computational Methods in Applied Sciences. Springer.Google Scholar
  8. Altenbach, H., & Eremeyev, V. A. (Eds.). (2013a) Generalized continua from the theory to engineering applications, volume 541 of CISM International Centre for Mechanical Sciences. Springer Vienna.Google Scholar
  9. Altenbach, H., & Eremeyev, V. A. (2014a). Vibration analysis of non-linear 6-parameter prestressed shells. Meccanica, 49, 1751–1761.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Altenbach, H., & Eremeyev, V. A. (2008). On the analysis of viscoelastic plates made of functionally graded materials. ZAMM, 88(5), 332–341.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Altenbach, H., & Eremeyev, V. A. (2009a). On the bending of viscoelastic plates made of polymer foams. Acta Mechanica, 204(3–4), 137–154.zbMATHCrossRefGoogle Scholar
  12. Altenbach, H., & Eremeyev, V. A. (2009b). On the time-dependent behavior of FGM plates. Key Engineering Materials, 399, 63–70.CrossRefGoogle Scholar
  13. Altenbach, H., & Eremeyev, V. A. (2011b). On the shell theory on the nanoscale with surface stresses. The International Journal of Engineering Science, 49, 1294–1301.MathSciNetCrossRefGoogle Scholar
  14. Altenbach, H., & Eremeyev, V. A. (2009c). On the linear theory of micropolar plates. ZAMM, 89(4), 242–256.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Altenbach, H., & Eremeyev, V. A. (2011c). Shell-like Structures: Non-classical Theories and Applications, volume 15 of Advanced Structured Materials. Springer.Google Scholar
  16. Altenbach, H., & Eremeyev, V. A. (2013b). Cosserat-type shells. In H. Altenbach & V. A. Eremeyev (Eds.), Generalized continua from the theory to engineering applications (Vol. 541, pp. 131–178). CISM Courses and Lectures Wien: Springer.Google Scholar
  17. Altenbach, H., & Eremeyev, V. A. (2014b). Actual developments in the nonlinear shell theory—state of the art and new applications of the six-parameter shell theory. In W. Pietraszkiewicz & J. Górski (Eds.), Shell structures: Theory and applications (Vol. 3, pp. 3–12). Taylor & Francis.Google Scholar
  18. Altenbach, H., & Eremeyev, V. A. (2015). On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Mathematics and Mechanics of Complex Systems, 3(3), 273–283.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Altenbach, H., & Mikhasev, G. (Eds.). (2014). Shell and Membrane Theories in Mechanics and Biology: From Macro-to Nanoscale Structures, volume 45 of Advanced Structured Materials. Springer.Google Scholar
  20. Altenbach, H., & Morozov, N. F. (Eds.). (2013). Surface Effects in Solid Mechanics—Models, Simulations and Applications. Heidelberg: Springer.zbMATHGoogle Scholar
  21. Altenbach, H., Eremeyev, V. A., & Morozov, N. F. (2009). Linear theory of shells taking into account surface stresses. Doklady Physics, 54(12), 531–535.CrossRefGoogle Scholar
  22. Altenbach, H., Eremeev, V. A., & Morozov, N. F. (2010a). On equations of the linear theory of shells with surface stresses taken into account. Mechanics of Solids, 45(3), 331–342.CrossRefGoogle Scholar
  23. Altenbach, H., Eremeyev, V. A., Lebedev, L. P., & Rendón, L. A. (2010b). Acceleration waves and ellipticity in thermoelastic micropolar media. Archive of Applied Mechanics, 80(3), 217–227.zbMATHCrossRefGoogle Scholar
  24. Altenbach, H., Bîrsan, M., & Eremeyev, V. A. (2012a). On a thermodynamic theory of rods with two temperature fields. Acta Mechanica, 223(8), 1583–1596.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Altenbach, H., Eremeyev, V. A., & Morozov, N. F. (2012b). Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. The International Journal of Engineering Science, 59, 83–89.MathSciNetCrossRefGoogle Scholar
  26. Altenbach, H., Bîrsan, M., & Eremeyev, V. A. (2013). Cosserat-type rods. In H. Altenbach & V. A. Eremeyev (Eds.), Generalized Continua from the Theory to Engineering Applications (Vol. 541, pp. 179–248). CISM Courses and Lectures Wien: Springer.Google Scholar
  27. Altenbach, J., Altenbach, H., & Eremeyev, V. A. (2010c). On generalized Cosserat-type theories of plates and shells: A short review and bibliography. Archive of Applied Mechanics, 80, 73–92.zbMATHCrossRefGoogle Scholar
  28. Amabili, M. (2008). Nonlinear vibrations and stability of shells and plates. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  29. Ambartsumyan, S. A. (1970). Theory of anisotropic plates: Strength, stability, vibration. Stamford: Technomic.Google Scholar
  30. Andreaus, U., dell’Isola, F., & Porfiri, M. (2004). Piezoelectric passive distributed controllers for beam flexural vibrations. Journal of Vibration and Control, 10(5), 625–659.zbMATHCrossRefGoogle Scholar
  31. Bauchau, O. A. (2010). Flexible Multibody Dynamics (Vol. 176). Solid Mechanics and its Applications Dordrecht: Springer.Google Scholar
  32. Bauchau, O. A., & Trainelli, L. (2003). The vectorial parameterization of rotation. Nonlinear Dynamics, 32(1), 71–92.MathSciNetzbMATHCrossRefGoogle Scholar
  33. Berdichevsky, V. L. (2009). Variational principles of continuum mechanics. I. Fundamentals. Heidelberg: Springer.zbMATHGoogle Scholar
  34. Berezovski, A., Engelbrecht, J., & Maugin, G. A. (2008). Numerical simulation of waves and fronts in inhomogeneous solids. New Jersey: World Scientific.zbMATHGoogle Scholar
  35. Bhattacharya, K. (2003). Microstructure of martensite: Why it forms and how it gives rise to the shape-memory effect. Oxford: Oxford University Press.zbMATHGoogle Scholar
  36. Bhattacharya, K., & James, R. D. (1999). A theory of thin films of martensitic materials with applications to microactuators. Journal of the Mechanics and Physics of Solids, 36(3), 531–576.MathSciNetzbMATHCrossRefGoogle Scholar
  37. Bigoni, D., & Drugan, W. J. (2007). Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. Transactions of ASME. Journal of Applied Mechanics, 74(4), 741–753.MathSciNetCrossRefGoogle Scholar
  38. Bîrsan, M., Altenbach, H., Sadowski, T., Eremeyev, V. A., & Pietras, D. (2012). Deformation analysis of functionally graded beams by the direct approach. Composites B: Engineering, 43(3), 1315–1328.CrossRefGoogle Scholar
  39. Boulbitch, A. A. (1999). Equations of heterophase equilibrium of a biomembrane. Archive of Applied Mechanics, 69(2), 83–93.zbMATHCrossRefGoogle Scholar
  40. Carcaterra, A., Akay, A., & Bernardini, C. (2012). Trapping of vibration energy into a set of resonators: Theory and application to aerospace structures. Mechanical Systems and Signal Processing, 26, 1–14.CrossRefGoogle Scholar
  41. Carrera, E., Brischetto, S., & Nali, P. (2011). Plates and shells for smart structures: Classical and advanced theories for modeling and analysis. Chichester: Wiley.zbMATHCrossRefGoogle Scholar
  42. Chróścielewski, J., & Witkowski, W. (2010). On some constitutive equations for micropolar plates. ZAMM, 90(1), 53–64.MathSciNetzbMATHCrossRefGoogle Scholar
  43. Chróścielewski, J., Makowski, J., & Pietraszkiewicz, W. (2004a). Statics and dynamics of multifolded shells: Nonlinear theory and finite element method. Warsaw: IPPT PAN.Google Scholar
  44. Chróścielewski, J., Makowski, J., & Pietraszkiewicz, W. (2004b). Statics and dynamics of multyfolded shells: Nonlinear theory and finite elelement method (in Polish). Warszawa: Wydawnictwo IPPT PAN.Google Scholar
  45. Chróścielewski, J., Pietraszkiewicz, W., & Witkowski, W. (2010). On shear correction factors in the non-linear theory of elastic shells. International Journal of Solids and Structures, 47(25–26), 3537–3545.zbMATHCrossRefGoogle Scholar
  46. Ciarlet, Ph. (1997). Mathematical elasticity, Volume II: Theory of plates. Amsterdam: Elsevier.Google Scholar
  47. Ciarlet, Ph. (2000). Mathematical elasticity, Volume III: Theory of shells. Amsterdam: Elsevier.Google Scholar
  48. Courant, R., & Hilbert, D. (1991). Methods of mathematical physics (Vol. 1). New York: Wiley.zbMATHGoogle Scholar
  49. de Gennes, P. G., Brochard-Wyart, F., & Quéré, D. (2004). Capillarity and wetting phenomena: Drops, bubbles, pearls, waves. New York: Springer.zbMATHCrossRefGoogle Scholar
  50. dell’Isola, F., & Vidoli, S. (1998). Damping of bending waves in truss beams by electrical transmission lines with PZT actuators. Archive of Applied Mechanics, 68(9), 626–636.Google Scholar
  51. dell’Isola, F., Porfiri, M., & Vidoli, S. (2003). Piezo-ElectroMechanical (PEM) structures: passive vibration control using distributed piezoelectric transducers. Comptes Rendus Mécanique, 331(1), 69–76.Google Scholar
  52. dell’Isola, F., Della Corte, A., Greco, L., & Luongo, A. (2016a). Plane bias extension test for a continuum with two inextensible families of fibers: A variational treatment with lagrange multipliers and a perturbation solution. International Journal of Solids and Structures, 81, 1–12.Google Scholar
  53. dell’Isola, F., Giorgio, I., Pawlikowski, M., & Rizzi, N. L. (2016b). Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proceedings of the Royal Society of London. Series A, 472(2185), 20150790.Google Scholar
  54. Diebels, S., & Steeb, H. (2003). Stress and couple stress in foams. Computational Materials Science, 28(3), 714–722.CrossRefGoogle Scholar
  55. Duan, H. L., Wang, J., & Karihaloo, B. L. (2008). Theory of elasticity at the nanoscale. In Advances in applied mechanics (Vol. 42, pp. 1–68). Elsevier.Google Scholar
  56. Elliott, C. M., & Stinner, B. (2010). A surface phase field model for two-phase biological membranes. SIAM Journal on Applied Mathematics, 70(8), 2904–2928.MathSciNetzbMATHCrossRefGoogle Scholar
  57. Eremeyev, V. A. (2005a). Nonlinear micropolar shells: Theory and applications. In W. Pietraszkiewicz & C. Szymczak (Eds.), Shell structures: Theory and applications (pp. 11–18). London: Taylor & Francis.Google Scholar
  58. Eremeyev, V. A. (2005b). Acceleration waves in micropolar elastic media. Doklady Physics, 50(4), 204–206.CrossRefGoogle Scholar
  59. Eremeyev, V. A., & Lebedev, L. P. (2011). Existence theorems in the linear theory of micropolar shells. ZAMM, 91(6), 468–476.MathSciNetzbMATHCrossRefGoogle Scholar
  60. Eremeyev, V. A., & Pietraszkiewicz, W. (2006). Local symmetry group in the general theory of elastic shells. Journal of Elasticity, 85(2), 125–152.MathSciNetzbMATHCrossRefGoogle Scholar
  61. Eremeyev, V. A., & Pietraszkiewicz, W. (2011). Thermomechanics of shells undergoing phase transition. Journal of the Mechanics and Physics of Solids, 59(7), 1395–1412.MathSciNetzbMATHCrossRefGoogle Scholar
  62. Eremeyev, V. A., & Pietraszkiewicz, W. (2004). The non-linear theory of elastic shells with phase transitions. The Journal of Elasticity, 74(1), 67–86.MathSciNetzbMATHCrossRefGoogle Scholar
  63. Eremeyev, V. A., & Pietraszkiewicz, W. (2010). On tension of a two-phase elastic tube. In W. Pietraszkiewicz & I. Kreja (Eds.), Shell structures: Theory and applications (Vol. 2, pp. 63–66). Boca Raton: CRC Press.Google Scholar
  64. Eremeyev, V. A., & Pietraszkiewicz, W. (2009). Phase transitions in thermoelastic and thermoviscoelastic shells. Archives of Mechanics, 61(1), 41–67.MathSciNetzbMATHGoogle Scholar
  65. Eremeyev, V. A., & Pietraszkiewicz, W. (2012). Material symmetry group of the non-linear polar-elastic continuum. International Journal of Solids and Structures, 49(14), 1993–2005.CrossRefGoogle Scholar
  66. Eremeyev, V. A., & Pietraszkiewicz, W. (2014). Editorial: Refined theories of plates and shells. ZAMM, 94(1–2), 5–6.MathSciNetCrossRefGoogle Scholar
  67. Eremeyev, V. A., & Pietraszkiewicz, W. (2016). Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Mathematics and Mechanics of Solids, 21(2), 210–221.MathSciNetzbMATHCrossRefGoogle Scholar
  68. Eremeyev, V. A., & Zubov, L. M. (1994). On the stability of elastic bodies with couple stresses. Mechanics of Solids, 29(3), 172–181.Google Scholar
  69. Eremeyev, V. A., & Zubov, L. M. (2007). On constitutive inequalities in nonlinear theory of elastic shells. ZAMM, 87(2), 94–101.MathSciNetzbMATHCrossRefGoogle Scholar
  70. Eremeyev, V. A., & Zubov, L. M. (2008). Mechanics of elastic shells (in Russian). Moscow: Nauka.zbMATHGoogle Scholar
  71. Eremeyev, V. A., Altenbach, H., & Morozov, N. F. (2009). The influence of surface tension on the effective stiffness of nanosize plates. Doklady Physics, 54(2), 98–100.zbMATHCrossRefGoogle Scholar
  72. Eremeyev, V. A., Lebedev, L. P., & Altenbach, H. (2013). Foundations of microplar mechanics. Heidelberg: Springer.zbMATHCrossRefGoogle Scholar
  73. Eremeyev, V. A., Ivanova, E. A., & Morozov, N. F. (2015a). On free oscillations of an elastic solids with ordered arrays of nano-sized objects. Continuum Mechanics and Thermodynamics, 27(4–5), 583–607.MathSciNetzbMATHCrossRefGoogle Scholar
  74. Eremeyev, V. A., Lebedev, L. P., & Cloud, M. J. (2015b). The Rayleigh and Courant variational principles in the six-parameter shell theory. Mathematics and Mechanics of Solids, 20(7), 806–822.Google Scholar
  75. Eringen, A. C. (1967a). Theory of micropolar plates. ZAMP, 18(1), 12–30.MathSciNetCrossRefGoogle Scholar
  76. Eringen, A. C. (1967b). Linear theory of micropolar viscoelasticity. International Journal of Engineering Science, 5(2), 191–204.zbMATHCrossRefGoogle Scholar
  77. Eringen, A. C. (1999). Microcontinuum field theory. I: Foundations and solids. New York: Springer.zbMATHCrossRefGoogle Scholar
  78. Eringen, A. C., & Maugin, G. A. (1990). Electrodynamics of continua. New York: Springer.CrossRefGoogle Scholar
  79. Fichera, G. (1972). Existence theorems in elasticity. In S. Flügge (Ed.), Handbuch der Physik (pp. 347–389), volume VIa/2 Berlin: Springer.Google Scholar
  80. Finn, R. (1986). Equilibrium capillary surfaces. New York: Springer.zbMATHCrossRefGoogle Scholar
  81. Fu, Y. B., & Ogden, R. W. (1999). Nonlinear stability analysis of pre-stressed elastic bodies. Continuum Mechanics and Thermodynamics, 11, 141–172.MathSciNetzbMATHCrossRefGoogle Scholar
  82. Germain, P. (1973a). La méthode des puissances virtuelles en mécanique des milieux continus - première partie, théorie du second gradient. Journal de Mécanique, 12, 235–274.MathSciNetzbMATHGoogle Scholar
  83. Germain, P. (1973b). The method of virtual power in continuum mechanics. part 2: Microstructure. SIAM Journal on Applied Mathematics, 25(3), 556–575.MathSciNetzbMATHCrossRefGoogle Scholar
  84. Giorgio, I., Grygoruk, R., dell’Isola, F., & Steigmann, D. J. (2015). Pattern formation in the three-dimensional deformations of fibered sheets. Mechanics Research Communications, 69, 164–171.CrossRefGoogle Scholar
  85. Goda, I., Assidi, M., Belouettar, S., & Ganghoffer, J. F. (2012). A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. Journal of the Mechanical Behavior of Biomedical Materials, 16, 87–108.CrossRefGoogle Scholar
  86. Goldenveizer, A. L. (1976). Theory of thin elastic shells (in Russ.). Moscow: Nauka.Google Scholar
  87. Green, A. E., & Naghdi, P. M. (1979). On thermal effects in the theory of shells. Proceedings of the Royal Society of London Series A, 365(1721), 161–190.MathSciNetzbMATHCrossRefGoogle Scholar
  88. Green, A. E., & Naghdi, P. M. (1970). Non-isothermal theory of rods, plates and shells. International Journal of Solids and Structures, 6, 209–244.zbMATHCrossRefGoogle Scholar
  89. Gurtin, M. E., & Murdoch, A. I. (1975). A continuum theory of elastic material surfaces. The Archive for Rational Mechanics and Analysis, 57(4), 291–323.MathSciNetzbMATHCrossRefGoogle Scholar
  90. He, Y. J., & Sun, Q. P. (2009). Effects of structural and material length scales on stress-induced martensite macro-domain patterns in tube configurations. The International Journal of Solids and Structures, 46(16), 3045–3060.zbMATHCrossRefGoogle Scholar
  91. He, Y. J., & Sun, Q. P. (2010). Macroscopic equilibrium domain structure and geometric compatibility in elastic phase transition of thin plates. The International Journal of Mechanical Sciences, 52(2), 198–211.CrossRefGoogle Scholar
  92. Hörmander, L. (1976). Linear partial differential equations (4th ed., Vol. 116). A Series of Comprehensive Studies in Mathematics Berlin: Springer.Google Scholar
  93. Jaiani, G. (2011). Cusped shell-like structures. Heidelberg: Springer.zbMATHCrossRefGoogle Scholar
  94. Jaiani, G., & Podio-Guidugli, P. (2008). IUTAM Symposium on Relations of Shell, Plate, Beam and 3D Models: Proceedings of the IUTAM Symposium on the Relations of Shell, Plate, Beam, and 3D Models Dedicated to the Centenary of Ilia Vekua’s Birth, held Tbilisi, Georgia, April 23–27, 2007, Vol. 9. Springer.Google Scholar
  95. James, R. D., & Rizzoni, R. (2000). Pressurized shape memory thin films. The Journal of Elasticity, 59(1–3), 399–436.MathSciNetzbMATHCrossRefGoogle Scholar
  96. Javili, A., McBride, A., & Steinmann, P. (2012). Thermomechanics of solids with lower-dimensional energetics: On the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Applied Mechanics Reviews, 65, 010802–1–31.Google Scholar
  97. Javili, A., dell’Isola, F., & Steinmann, P. (2013). Geometrically nonlinear higher-gradient elasticity with energetic boundaries. Journal of the Mechanics and Physics of Solids, 61(12), 2381–2401.MathSciNetzbMATHCrossRefGoogle Scholar
  98. Jemielita, G. (2001). Meandry teorii płyt i powłok. In Cz. Woźniak (Ed.), Mechanics of elastic plates and shells (in Polish), volume VIII of Mechanika Techniczna. PWN, Warszawa.Google Scholar
  99. Kabrits, S. A., Mikhailovskiy, E. I., Tovstik, P. E., Chernykh, K. F., & Shamina, V. A. (2002). General nonlinear theory of elastic shells (in Russ.). St. Petersburg State University, St. Petersburg.Google Scholar
  100. Koç, I. M., Carcaterra, A., Xu, Z., & Akay, A. (2005). Energy sinks: Vibration absorption by an optimal set of undamped oscillators. The Journal of the Acoustical Society of America, 118(5), 3031–3042.CrossRefGoogle Scholar
  101. Konopińska, V., & Pietraszkiewicz, W. (2007). Exact resultant equilibrium conditions in the non-linear theory of branching and self-intersecting shells. The International Journal of Solids and Structures, 44(1), 352–369.zbMATHCrossRefGoogle Scholar
  102. Korteweg, D. J. (1901). Sur la forme que prennent les équations des mouvements des fluides si l’on tient compte des forces capillaires par des variations de densité. Archives Néderlandaises des sciences exactes et naturelles, Sér., II(6), 1–24.zbMATHGoogle Scholar
  103. Kreja, I. (2007). Geometrically non-linear analysis of layered composite plates and shells. Gdańsk: Gdańsk University of Technology.Google Scholar
  104. Lakes, R. S. (1986). Experimental microelasticity of two porous solids. The International Journal of Solids and Structures, 22(1), 55–63.CrossRefGoogle Scholar
  105. Laplace, P. S. (1805). Sur l’action capillaire. supplément à la théorie de l’action capillaire. Traité de mécanique céleste (Vol. 4, pp. 771–777). Supplement 1, Livre X Paris: Gauthier-Villars et fils.Google Scholar
  106. Laplace, P. S. (1806). À la théorie de l’action capillaire. supplément à la théorie de l’action capillaire. Traité de mécanique céleste (Vol. 4, pp. 909–945). Supplement 2, Livre X Paris: Gauthier-Villars et fils.Google Scholar
  107. Lebedev, L. P., Cloud, M. J., & Eremeyev, V. A. (2010). Tensor analysis with applications in mechanics. New Jersey: World Scientific.zbMATHCrossRefGoogle Scholar
  108. Libai, A., & Simmonds, J. G. (1983). Nonlinear elastic shell theory. Advances in Applied Mechanics, 23, 271–371.zbMATHCrossRefGoogle Scholar
  109. Libai, A., & Simmonds, J. G. (1998). The nonlinear theory of elastic shells (2nd ed.). Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  110. Lions, J.-L., & Magenes, E. (1968). Problèmes aux limites non homogènes et applications. Paris: Dunod.zbMATHGoogle Scholar
  111. Longley, W. R. & Van Name, R. G. (Eds.). (1928). The collected works of J. Willard Gibbs, PHD., LL.D. Vol. I Thermodynamics. Longmans, New York.Google Scholar
  112. Lurie, A. I. (1990). Nonlinear theory of elasticity. Amsterdam: North-Holland.zbMATHGoogle Scholar
  113. Lurie, A. I. (2001). Analytical mechanics. Berlin: Springer.Google Scholar
  114. Makowski, J., & Pietraszkiewicz, W. (2002). Thermomechanics of shells with singular curves. Zesz. Nauk. No 528/1487/2002, IMP PAN, Gdańsk.Google Scholar
  115. Maugin, G. A. (1988). Continuum mechanics of electromagnetic solids. Oxford: Elsevier.zbMATHGoogle Scholar
  116. Maurini, C., dell’Isola, F., & Del Vescovo, D. (2004). Comparison of piezoelectronic networks acting as distributed vibration absorbers. Mechanical Systems and Signal Processing, 18(5), 1243–1271.CrossRefGoogle Scholar
  117. Mindlin, R. D. (1951). Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. Transactions of ASME. Journal of Applied Mechanics, 18, 31–38.zbMATHGoogle Scholar
  118. Miyazaki, S., Fu, Y. Q., & Huang, W. M. (Eds.). (2009). Thin film shape memory alloys: Fundamentals and device applications. Cambridge: Cambridge University Press.Google Scholar
  119. Murdoch, A. I. (1976a). A thermodynamical theory of elastic material interfaces. The Quarterly Journal of Mechanics and Applied Mathematics, 29(3), 245–274.MathSciNetzbMATHCrossRefGoogle Scholar
  120. Murdoch, A. I. (1976b). On the entropy inequality for material interfaces. ZAMP, 27(5), 599–605.MathSciNetCrossRefGoogle Scholar
  121. Naghdi, P. M. (1972). The theory of plates and shells. In S. Flügge (Ed.), Handbuch der Physik (pp. 425–640), volume VIa/2 Heidelberg: Springer.Google Scholar
  122. Nirenberg, L. (2001). Topics in nonlinear functional analysis. New York: American Mathematical Society.zbMATHCrossRefGoogle Scholar
  123. Novozhilov, V. V., Chernykh, K. F., & Mikhailovskiy, E. I. (1991). Linear theory of thin shells (in Russ.). Politekhnika, Leningrad.Google Scholar
  124. Ogden, R. W. (1997). Non-linear elastic deformations. Mineola: Dover.Google Scholar
  125. Pietraszkiewicz, W. (2011). Refined resultant thermomechanics of shells. International Journal of Engineering Science, 49(10), 1112–1124.MathSciNetCrossRefGoogle Scholar
  126. Pietraszkiewicz, W. (1979a). Finite rotations and langrangian description in the non-linear theory of shells. Warszawa-Poznań: Polish Sci. Publ.zbMATHGoogle Scholar
  127. Pietraszkiewicz, W. (1979b). Consistent second approximation to the elastic strain energy of a shell. ZAMM, 59, 206–208.MathSciNetzbMATHGoogle Scholar
  128. Pietraszkiewicz, W. (1989). Geometrically nonlinear theories of thin elastic shells. Uspekhi Mechaniki (Advances in Mechanics), 12(1), 51–130.MathSciNetGoogle Scholar
  129. Pietraszkiewicz, W. (2015). The resultant linear six-field theory of elastic shells: What it brings to the classical linear shell models? ZAMM, 10.1002/zamm.201500184.Google Scholar
  130. Pietraszkiewicz, W., & Eremeyev, V. A. (2009a). On natural strain measures of the non-linear micropolar continuum. International Journal of Solids and Structures, 46(3–4), 774–787.MathSciNetzbMATHCrossRefGoogle Scholar
  131. Pietraszkiewicz, W., & Eremeyev, V. A. (2009b). On vectorially parameterized natural strain measures of the non-linear Cosserat continuum. International Journal of Solids and Structures, 46(11–12), 2477–2480.Google Scholar
  132. Pietraszkiewicz, W., & Górski, J. (Eds.). (2014). Shell structures: Theory and applications (Vol. 3). Boca Raton: CRC Press.Google Scholar
  133. Pietraszkiewicz, W., & Konopińska, V. (2015). Junctions in shell structures: A review. Thin-Walled Structures, 95, 310–334.CrossRefGoogle Scholar
  134. Pietraszkiewicz, W., & Konopińska, V. (2011). On unique kinematics for the branching shells. The International Journal of Solids and Structures, 48(14), 2238–2244.CrossRefGoogle Scholar
  135. Pietraszkiewicz, W., & Kreja, I. (Eds.). (2010). Shell structures: Theory and applications (Vol. 2). Boca Raton: CRC Press.zbMATHGoogle Scholar
  136. Pietraszkiewicz, W., & Szymczak, C. (Eds.). (2005). Shell structures: Theory and applications. London: Taylor & Francis.Google Scholar
  137. Pietraszkiewicz, W., Eremeyev, V. A., & Konopińska, V. (2007). Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM, 87(2), 150–159.MathSciNetzbMATHCrossRefGoogle Scholar
  138. Reda, H., Rahali, Y., Ganghoffer, J. F., & Lakiss, H. (2016). Wave propagation in 3d viscoelastic auxetic and textile materials by homogenized continuum micropolar models. Composite Structures, 141, 328–345.CrossRefGoogle Scholar
  139. Reddy, J. N. (2003). Mechanics of laminated composite plates and shells: Theory and analysis (2nd ed.). Boca Raton: CRC Press.Google Scholar
  140. Reissner, E. (1944). On the theory of bending of elastic plates. Journal of Mathematical Physics, 23, 184–194.MathSciNetzbMATHCrossRefGoogle Scholar
  141. Reissner, E. (1985). Reflection on the theory of elastic plates. Applied Mechanics Reviews, 38(11), 1453–1464.CrossRefGoogle Scholar
  142. Reissner, E. (1977). A note on generating generalized two-dimensional plate and shell theories. ZAMP, 28(4), 633–642.zbMATHCrossRefGoogle Scholar
  143. Rowlinson, J. S., & Widom, B. (2003). Molecular theory of capillarity. New York: Dover.Google Scholar
  144. Sargsyan, S. H. (2011). The general dynamic theory of micropolar elastic thin shells. Doklady Physics, 56(1), 39–42.MathSciNetCrossRefGoogle Scholar
  145. Sedov, L. I. (1968). Models of continuous media with internal degrees of freedom. Journal of Applied Mathematics and Mechanics, 32(5), 803–819.zbMATHCrossRefGoogle Scholar
  146. Shkutin, L. I. (2007). Analysis of axisymmetric phase strains in plates and shells. Journal of Applied Mechanics and Technical Physics, 48(2), 285–291.MathSciNetzbMATHCrossRefGoogle Scholar
  147. Simmonds, J. G. (2005). A simple nonlinear thermodynamic theory of arbitrary elastic beams. The Journal of Elasticity, 81(1), 51–62.MathSciNetzbMATHCrossRefGoogle Scholar
  148. Simmonds, J. G. (2011). A classical, nonlinear thermodynamic theory of elastic shells based on a single constitutive assumption. The Journal of Elasticity, 105(1–2), 305–312.MathSciNetzbMATHCrossRefGoogle Scholar
  149. Simmonds, J. G. (1984). The thermodynamical theory of shells: Descent from 3-dimensions without thickness expansions. In E. L. Axelrad & F. A. Emmerling (Eds.), Flexible shells (pp. 1–11). Theory and Applications Berlin: Springer.Google Scholar
  150. Steigmann, D. J., & Ogden, R. W. (1999). Elastic surface-substrate interactions. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Science, 455(1982), 437–474.Google Scholar
  151. Steinberg, L., & Kvasov, R. (2013). Enhanced mathematical model for Cosserat plate bending. Thin-Walled Structures, 63, 51–62.CrossRefGoogle Scholar
  152. Steinmann, P., & Häsner, O. (2005). On material interfaces in thermomechanical solids. Archive of Applied Mechanics, 75(1), 31–41.zbMATHCrossRefGoogle Scholar
  153. Tovstik, P. E., & Smirnov, A. L. (2001). Asymptotic methods in the buckling theory of elastic shells. Singapore: World Scientific.zbMATHGoogle Scholar
  154. Truesdell, C. (1977). A first course in rational continuum mechanics. New York: Academic Press.zbMATHGoogle Scholar
  155. Truesdell, C. (1984). Rational thermodynamics (2nd ed.). New York: Springer.zbMATHCrossRefGoogle Scholar
  156. Truesdell, C., & Noll, W. (1965). The nonlinear field theories of mechanics. In S. Flügge (Ed.), Handbuch der Physik (pp. 1–602). III(3) Berlin: Springer.Google Scholar
  157. van der Waals, J. D. (1893). The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density (Engl. transl. by J. S. Rowlinson). Journal of Statistical Physics, 20, 200–244.CrossRefGoogle Scholar
  158. Vidoli, S., & dell’Isola, F. (2001). Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks. European Journal of Mechanics: A/Solids, 20(3), 435–456.Google Scholar
  159. Wang, C. M., Reddy, J. N., & Lee, K. H. (2000). Shear deformable beams and shells. Amsterdam: Elsevier.zbMATHGoogle Scholar
  160. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., et al. (2011). Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica, 24, 52–82.CrossRefGoogle Scholar
  161. Wang, Z. Q., Zhao, Y.-P., & Huang, Z.-P. (2010). The effects of surface tension on the elastic properties of nano structures. International Journal of Engineering Science, 48(2), 140–150.MathSciNetCrossRefGoogle Scholar
  162. Wiśniewski, K. (2010). Finite rotation shells: Basic equations and finite elements for Reissner kinematics. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  163. Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65–87.CrossRefGoogle Scholar
  164. Zhilin, P. A. (1976). Mechanics of deformable directed surfaces. International Journals of Solids and Structures, 12(9–10), 635–648.MathSciNetCrossRefGoogle Scholar
  165. Zubov, L. M. (1997). Nonlinear theory of dislocations and disclinations in elastic bodies. Berlin: Springer.zbMATHGoogle Scholar
  166. Zubov, L. M. (2009). Micropolar shell equilibrium equations. Doklady Physics, 54(6), 290–293.CrossRefGoogle Scholar

Copyright information

© CISM International Centre for Mechanical Sciences 2017

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and AvionicsRzeszów University of TechnologyPodkarpacie, RzeszówPoland
  2. 2.South Scientific Center of Russian Academy of ScienceRostov on DonRussia
  3. 3.Department of Mathematics, Mechanics and Computer ScienceSouth Federal UniversityRostov on DonRussia
  4. 4.Chair of Engineering Mechanics, Faculty of Mechanical EngineeringOtto-von-Guericke-University MagdeburgMagdeburgGermany

Personalised recommendations