Advertisement

Application of Isotopic Materials Science in Bulk and Low-Dimensional Structures

  • Vladimir G. Plekhanov
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 248)

Abstract

This chapter reviews the application of isotopic materials science in different fields of nanotechnology and nanoscience. The application of stable isotopes is very briefly described: in first step nonlinear excitons in bulk isotope-mixed materials as well as phonon-related isotope effect: thermal expansion, thermal conductivity, and lattice constants. Part of this chapter is devoted to very interesting results connecting with isotope-mixed graphene and its application in nanoelectronics as well as nano-optics. Semiconducting graphene is based on the electronic excitation energy renormalization by the strong (nuclear) interaction. It was shown very useful for quantum processors that have used the low-dimensional structures (quantum wells, wires, and dots) in isotope-mixed compounds including graphene. The materials of this chapter stress very perspective of the new field of nanotechnology—isotopic materials science.

References

  1. 1.
    V.Ju. Baranov (ed.), Isotopes, vols. 1, 2 (Fizmatlit, Moscow, 2005). (in Russian)Google Scholar
  2. 2.
    A.A. Berezin, Isotopic engineering (perspectives). J. Phys. Chem. Solids 50, 5–8 (1989)CrossRefGoogle Scholar
  3. 3.
    E.E. Haller, Isotopically engineered semiconductors. J. Appl. Phys. 77, 2857–2878 (1995)CrossRefGoogle Scholar
  4. 4.
    V.G. Plekhanov, Isotope engineering. Uspekhi - Phys. 170, 1245–1252 (2000). (in Russian)Google Scholar
  5. 5.
    V.G. Plekhanov, Applications of the Isotopic Effect in Solids (Springer, Heidelberg, 2004)CrossRefGoogle Scholar
  6. 6.
    A.A. Berezin, Stable isotopes in nanotechnology. Nanotechn. Percept. 5, 27–36 (2009)CrossRefGoogle Scholar
  7. 7.
    V.G. Plekhanov, Isotopes in Condensed Matter (Springer, Heidelberg, 2013)CrossRefGoogle Scholar
  8. 8.
    A. Sudbery, Quantum Mechanics and the Particles of Nature (Cambridge University Press, Cambridge, 1986)Google Scholar
  9. 9.
    J.W. Gibbs, One of the equilibrium of heterogeneous substances, in The Scientific Papers of J.W. Gibbs (Dover, New York, 1961)Google Scholar
  10. 10.
    M.J. Kelly, Low-Dimensional Semiconductors (Clarendon Press, Oxford, 1995)Google Scholar
  11. 11.
    J.H. Davis, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998)Google Scholar
  12. 12.
    P. Harrison, Qquantum Wells, Wires and Dots (Wiley, New York, 2001)Google Scholar
  13. 13.
    K. Goser, P. Glösekötter, J. Dienstuhl, Nanoelectronics and Nanosystems (Springer, Berlin, 2004)CrossRefGoogle Scholar
  14. 14.
    V.G. Plekhanov, Isotope Low-Dimensional Structures (Heidelberg, Springer, 2012)Google Scholar
  15. 15.
    A. Cho (ed.), Molecular Beam Epitaxy (Springer, Berlin, 1997)Google Scholar
  16. 16.
    G.B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice, 2nd edn. (Academic Press, London, 1999)Google Scholar
  17. 17.
    A. Rastelli, S. Kiravittaya, O.G, Schmidt, Growth and control of optically active quantum dots, in Nanoscience and Technology, ed. by P. Mihler (Springer, Berlin, 2009)CrossRefGoogle Scholar
  18. 18.
    V.A. Shchukin, D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71, 1125–1171 (1999)CrossRefGoogle Scholar
  19. 19.
    J. Strangl, V. Holy, G. Bauer, Structural properties of self-organized semiconductor nanostructures. ibid 76, 725–783 (2004)Google Scholar
  20. 20.
    C.J. Chen, Introduction to Scanning Tunneling Microscoppy (Oxford University Press, New York, 1993)Google Scholar
  21. 21.
    L. Esaki, R. Tsu, Supelattice and negative differential conductivity in semiconductors. IBM J. Res. Develop. 14, 61 (1970)CrossRefGoogle Scholar
  22. 22.
    V.G. Plekhanov, Isotope Effects in Solid State Physics (Academic Press, San Diego, 2001)Google Scholar
  23. 23.
    V.G. Plekhanov, Isotope-Based Quantum Information (2009), arXiv: quant-ph/0909.0820
  24. 24.
    P. Michler (ed.) Single Semiconductor Quantum Dots (Springer, Berlin, 2009)Google Scholar
  25. 25.
    G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Halsted Press, New York, 1988)Google Scholar
  26. 26.
    C. Weisbuch, B. Vinter, Quantum Semiconductor Structures (Academic Press, San Diego, 1991)CrossRefGoogle Scholar
  27. 27.
    K. Thyagarajan, A.K. Ghatak (eds.), Lasers Theory and Applications (Plenum Press, New York, 1982)Google Scholar
  28. 28.
    C. Klingshirn, Lasers processes in semiconductors, in Spectr. Solid-State Laser Type Matter, Proceedings of Course Enrico Fermi, Erice (New York, London, 1989)Google Scholar
  29. 29.
    C. Klingshirn, H. Haug, Optical properties of highly excited direct gap semiconductors. Phys. Rep. 70, 315–398 (1981)CrossRefGoogle Scholar
  30. 30.
    V.G. Plekhanov, Elementary excitations in isotope-mixed crystals. Phys. Rep. 410, 1–235 (2005)CrossRefGoogle Scholar
  31. 31.
    M. Cardona, M.L.W. Thewalt, Isotope effect on optical spectra of semiconductors. Rev. Mod. Phys. 77, 1173–1224 (2005)CrossRefGoogle Scholar
  32. 32.
    K. Takiyama, M.I. Abd-Elrahman, T. Fujita et al., Photoluminescence and decay kinetics of indirect free excitons in diamonds under near-resonant laser excitation. Solid State Commun. 99, 793–796 (1996)CrossRefGoogle Scholar
  33. 33.
    K. Horiuchi, K. Nakamura, S. Yamashita, Current injection free-exciton recombination emission from synthesized diamond. Jpn. J. Appl. Phys. 39, L604–L608 (2000)CrossRefGoogle Scholar
  34. 34.
    S. Koizumi, K. Watanabe, M. Hasegawa et al., Ultraviolet emission from a diamond pn junction. Science 292, 1899–1901 (2001)CrossRefGoogle Scholar
  35. 35.
    B.E. Kane, A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)CrossRefGoogle Scholar
  36. 36.
    H. Watanabe, C.E. Nebel, S. Shikata, Isotopic homojunction band engineering from diamond. Science 324, 1425–1428 (2009)CrossRefGoogle Scholar
  37. 37.
    V.F. Agekyan, B.G. Alexandrov, Yu.A. Stepanov, Spectral and time domain characteristics of thermal localized excitons in solid solutions CdS\(_1-{\rm {x}} \)Se\(_{\rm {x}}\). Phys. Techn. Semicond. (St.-Petrsburg) 22, 1221 (1988). (in Ruasian)Google Scholar
  38. 38.
    H. Haug, Ultrafast physical processes in semiconductors, in Semiconductor and Semimetalls, vol. 67, ed. by K.T. Tsen, R.K. Willardson, K. Weber (San Diego, Academic Press, 2001) p. 201Google Scholar
  39. 39.
    K.C. Liu, R. Liboff, Criterion for exciton lasing in pure crystals. J. Appl. Phys. 54, 5633–5637 (1983)CrossRefGoogle Scholar
  40. 40.
    C.A. Benoit la Guilaume, A. Bonnot, J.M. Debever, Luminescence from polaritons. Phys. Rev. Lett. 24, 1235–1238 (1970)CrossRefGoogle Scholar
  41. 41.
    B. Honerlage, R. Levy, J.R. Grun, The dispersion of excitons, polaritons and biexcitons in direct-gap semiconductors. Phys. Rep. 124, 161–253 (1985)CrossRefGoogle Scholar
  42. 42.
    V.G. Plekhanov, Comparative study of isotope and chemical effects on the exciton states in LiH crystals. Prog. Solid State Chem. 29, 71–177 (2001)CrossRefGoogle Scholar
  43. 43.
    H. Haug, S.W. Koch, Quantum Theory of Optical and Electronic Properties of Semiconductors (World Scientific, London, 1993)CrossRefGoogle Scholar
  44. 44.
    S.I. Pekar, Crystal Optics and Additional Light Waves (Menlo Park, Benjamin/Cummings, San Francisco, 1983)Google Scholar
  45. 45.
    Y. Toyozawa, On dynamical behavior of excitons. Prog. Theor. Phys. (Kyoto) 12 (Suppl.) 111–140 (1959)Google Scholar
  46. 46.
    N.G. Basov, O.V. Bogdankevich, A.G. Devyatkov, Cadmium sulfide laser excited by fast electrons. Sov. Phys. JETP 20, 1067–1068 (1964)Google Scholar
  47. 47.
    L.A. Kulevsky, A.M. Prokhorov, The nature of the laser emission in CdS crystal at 90 K with two-photon excitation. IEEE QE 2, 584–586 (1966)CrossRefGoogle Scholar
  48. 48.
    V.G. Plekhanov, Resonant secondary emission spectra, in Proceedings of the International Conference on LASERS’80 (STS Press, McClean, 1981), pp. 91–99Google Scholar
  49. 49.
    V.G. Plekhanov, V.I. Altukhov, Free exciton luminescence and exciton - phonon interaction parameters of wide-gap insulators, in Proceedings of the International Conference on LASERS’82 (STS Press, McClean, 1983), pp. 292–299Google Scholar
  50. 50.
    V.G. Plekhanov, Wannier-Mott excitons in isotope disordered crystals. Rep. Prog. Phys. 61, 1045–1097 (1998)CrossRefGoogle Scholar
  51. 51.
    V.G. Plekhanov, Changes in spectra of luminescence and Raman scattering in lithium hydride under growth in the excitation intensity. Quantum Electron. (Moscow) 16, 2156–2159 (1989)Google Scholar
  52. 52.
    R.S. Knox, Theory of Excitons (Academic Press, New York, 1963)Google Scholar
  53. 53.
    E.F. Gross, Selected Papers (Leningrad, Science, 1976). (in Russian)Google Scholar
  54. 54.
    G. Leifried, W. Ludwig, Theory of Anharmonic Effect in Crystals (Academic Press, New York, 1961)Google Scholar
  55. 55.
    W. Cochran, R.A. Cowley, Phonons in perfect crystals, in Encyclopedia of Physics, ed. by S. Flügge (ed), vol. 25/2 (Light and Matter) (Springer, Berlin, 1967)Google Scholar
  56. 56.
    G.P. Srivastawa, The Physics of Phonons (Hilger, Bristol, 1990)Google Scholar
  57. 57.
    I.E. Tamm, Eine Bemerkung zur Diracschen Theorie der Lichtenstroung und Dispersion. Zs. Phys. 62, 705–708 (1930)CrossRefGoogle Scholar
  58. 58.
    M. Blackman, The specific heat of solids, in Handbuch der Physik, vol. 7, Pt. 1, ed. by S. Flüge (Springer, Berlin, 1955), pp. 325–367Google Scholar
  59. 59.
    P. Klemens, Thermal conductivity and lattice vibrational modes, in Solid State Physics, vol. 7, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1959), pp. 1–98Google Scholar
  60. 60.
    P. Debye, The Debye theory of specific heat. Ann. Phys. (Leipzig) 4(39), 789–803 (1912)CrossRefGoogle Scholar
  61. 61.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, New York, 1968)Google Scholar
  62. 62.
    V.A. Krymov, D.L. Fukc, Transactions of the Universities of USSR. Phys. 30, 39–51 (1987). (in Russian)Google Scholar
  63. 63.
    E. Grüneisen, Theorie des festen Zustandes einatomiger Elemente. Ann. Phys. 4(39), 257–306 (1912)CrossRefGoogle Scholar
  64. 64.
    E. Grüneisen, Zustand des festen Körpers. Handbuch der Physik 10, 1–59 (1926)Google Scholar
  65. 65.
    P. Debye, Zur Theorie der spezifischen Wärmen. Ann. Phys. 4(39), 789–807 (1912)CrossRefGoogle Scholar
  66. 66.
    G. Dolling, R.A. Cowley, The thermodynamic and optical properties of germanium, silicon, diamond and gallium arsenide. Proc. Phys. Soc. 88, 463–494 (1966)CrossRefGoogle Scholar
  67. 67.
    T.H. Baron, J.G. Collins, G.K. White, Thermal expansion of solids at low temperatures. Adv. Phys. 29, 609–730 (1980)CrossRefGoogle Scholar
  68. 68.
    V.I. Ozhogin, A.V. Inyushkin, A.N. Taldenkov, Isotope effect for thermal expansion coefficient of germanium. JETP Lett. (Moscow) 63, 463–466 (1996)Google Scholar
  69. 69.
    D.F. Gibbons, Thermal expansion of some crystals with the diamond structure. Phys. Rev. 112, 136–140 (1958)CrossRefGoogle Scholar
  70. 70.
    S.I. Novikova, Thermal Expansion of Solids (Science, Moscow, 1974) (in Russian)Google Scholar
  71. 71.
    D.K. Smith, H.R. Leider, Low-temperature thermal expansion of LiH, MgO and CaO. J. Appl. Cryst. 1, 246–249 (1968)CrossRefGoogle Scholar
  72. 72.
    H. Jex, Thermal expansion and mode Grüneisen parameters of LiH and LiD. J. Phys. Chem. Solids 35, 1221–1223 (1974)CrossRefGoogle Scholar
  73. 73.
    B.W. James, H. Kherandish, The low temperature variation of the elastic constants of LiH and LiD. J. Phys. C: Solid State Phys. 15, 6321–6339 (1982)CrossRefGoogle Scholar
  74. 74.
    D. Gerlich, C.S. Smith, The pressure and temperature derivatives of the elastic module of lithium hydride. J. Phys. Chem Solids 35, 1587–1592 (1974)CrossRefGoogle Scholar
  75. 75.
    Q. Johnson, A.C. Mitchel, Search for the NaCl and CsCl transition in LiH by flash X-ray diffraction. Acta Cryst. A31, S241–S245 (1975)Google Scholar
  76. 76.
    T.H. Geballe, G.W. Hull, Isotopic and other types of thermal resistance in germanium. Phys. Rev. 110, 773–775 (1958)CrossRefGoogle Scholar
  77. 77.
    J.J. Fontanella, D.E. Schuele, Low temperature Grüneisen parameter of RbI from elasticity data. J. Phys. Chem. Solids 31, 647–654 (1970)CrossRefGoogle Scholar
  78. 78.
    S. Haussuhl, I. Skorczyk, Elastische und thermoelastische Eigenschaften von LiH und LiD einkristallen. Zs. Krist. 130, 340–345 (1969)CrossRefGoogle Scholar
  79. 79.
    A.R. Ubellohde, The Molten State of Substances (Metallurgy, Moscow, 1982). (in Russian)Google Scholar
  80. 80.
    H. Dammak, E. Antonshchenkova, M. Hayoun et al., Isotope effect in lithium hydride and lithium deuteride by molecular dynamics simulations. J. Phys. Condens. Matt. 24, 435402–6 (2012)CrossRefGoogle Scholar
  81. 81.
    G.L. Anderson, G. Nasise, K. Phillipson et al., Isotopic effects on the thermal expansion of lithium hydride. J. Phys. Chem. Solids 31, 613–618 (1970)CrossRefGoogle Scholar
  82. 82.
    R.B. Von Dreele, J.G. Morgan, S.M. Stishov, Thermal expansion and equation of state of KCN of different isotopic composition. JETP (Moscow) 114, 2182–2186 (1998). (in Russian)Google Scholar
  83. 83.
    V.I. Tyutyunnik, Effect of isotope substitution on thermal expansion of LiH crystal. Phys. Status Solidi (b) 172, 539–543 (1992)CrossRefGoogle Scholar
  84. 84.
    V.S. Kogan, Isotope effect in structuring properties. Sov. Phys. Uspekhi 5, 579–618 (1963)CrossRefGoogle Scholar
  85. 85.
    V.I. Ozhogin, A.V. Inyushkin, A.N. Taldenkov et al., Isotope effect for thermal expansion coefficient of germanium. JETP (Moscow) 115, 243–248 (1999). (in Russian)Google Scholar
  86. 86.
    L. Wei, P.K. Kuo, R.L. Thomas, Thermal conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett. 79, 3764–3767 (1993)CrossRefGoogle Scholar
  87. 87.
    M. Asen-Palmer, K. Bartkowsky, E. Gmelin et al., Thermal conductivity of germanium crystals with different isotopic composition. Phys. Rev. B 56, 9431–9447 (1997)CrossRefGoogle Scholar
  88. 88.
    T. Ruf, R.W. Henn, M. Asen-Palmer et al., Thermal conductivity of isotopically enriched silicon. Solid State Commun. 115, 243–247 (2000); Erratum 127, 257 (2003)CrossRefGoogle Scholar
  89. 89.
    N.W. Aschcroft, N. David Mermin, Solid State Physics (Harcourt Brace College Publishers, New York, 1975)Google Scholar
  90. 90.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattice (Oxford University Press, Oxford, 1988)Google Scholar
  91. 91.
    V.N. Kostryukov, The capacity of LiH between 3.7 and 295K. Zh. Fiz. Khim. (Moscow) 35, 1759–1762 (1961) (in Russian)Google Scholar
  92. 92.
    D.N. Batchelor, R.O. Simons, Lattice constants and thermal expansivities of silicon and calcium fluoride between 6 and 322K. J. Chem. Phys. 41, 2324–2330 (1964)CrossRefGoogle Scholar
  93. 93.
    V.G. Plekhanov, Isotope effect in lattice dynamics. Physics - Uspekhi (Moscow) 46, 689–717 (2003)CrossRefGoogle Scholar
  94. 94.
    G. Yates, G.H. Wostenholm, J.K. Bingham, The specific heat of \(^{7}\)LiH and \(^{7}\)LiD at low temperature. J. Phys. C: Solid state Phys. 7, 1769–1778 (1974)CrossRefGoogle Scholar
  95. 95.
    F.F. Voronov, V.A. Goncharov, Compressions of lithium hydride. Fiz. Tverd. Tela (St. Petersburg) 8, 1643–1645 (1966). (in Russian)Google Scholar
  96. 96.
    V.G. Plekhanov, Lattice dynamics of isotopically mixed crystals. Opt. Spectr. (St. Petersburg) 82, 95–124 (1997)Google Scholar
  97. 97.
    V.G. Plekhanov, Isotope effect on the lattice dynamics of crystals. Mater. Sci. Eng. R35, 139–237 (2001)CrossRefGoogle Scholar
  98. 98.
    D.P. Schumacher, Polymorphies transition of LiH. Phys. Rev. 126, 1679–1684 (1962)CrossRefGoogle Scholar
  99. 99.
    D.R. Stephens, E.M. Lilley, Compressions of isotopes lithium hydride. J. Appl. Phys. 39, 177–180 (1968)CrossRefGoogle Scholar
  100. 100.
    Y. Kondo, K.J. Asaumi, Effect of pressure on the direct gap of LiH. J. Phys. Soc. Jpn. 57, 367–371 (1988)CrossRefGoogle Scholar
  101. 101.
    K. Chandehari, A. Ruoff, Band gap and index refraction of CsH to 25 GPa. Solid State Commun. 95, 385–388 (1995)CrossRefGoogle Scholar
  102. 102.
    W. Schnelle, E. Gmelin, Heat capacity of germanium crystals with different isotopic composition. J. Phys: Condens. Matter 13, 6087–6094 (2001)Google Scholar
  103. 103.
    M. Sanati, S.K. Estreicher, Specific heat and entropy of GaN. ibid 16, L327–L331 (2004)Google Scholar
  104. 104.
    J.M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979)Google Scholar
  105. 105.
    R. Berman, Thermal Conductions of Solids (Clarendon Press, Oxford, 1976)Google Scholar
  106. 106.
    M. Planck, Zur Theorie der Wärmestrahlung. Ann. Phys. 336, 758–768 (1910)CrossRefGoogle Scholar
  107. 107.
    R.E. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 1955)Google Scholar
  108. 108.
    I.Ya. Pomeranchuk, About thermal conductivity of dielectrics. J. Phys. (USSR) 6, 237–246 (1942)Google Scholar
  109. 109.
    D.G. Onn, A. Witek, Y.Z. Qiu et al., Some aspect of the thermal conductivity of isotopically enriched diamond single crystals. Phys. Rev. Lett. 68, 2806–2809 (1992)CrossRefGoogle Scholar
  110. 110.
    J.R. Olson, R.O. Pohl, J.W. Vandersande et al., Thermal conductivity of diamond between 170 and 1200K and the isotopic effect. Phys. Rev. B47, 14850–14856 (1993)CrossRefGoogle Scholar
  111. 111.
    M. Cardona, R.K. Kremer, M. Sanati et al., Measurements of the heat capacity of diamond with different isotopic composition. Solid State Commun. 133, 465–468 (2005)CrossRefGoogle Scholar
  112. 112.
    J. Callaway, Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959)CrossRefGoogle Scholar
  113. 113.
    A.P. Zhernov, A.V. Inyushkin, Kinetic coefficients in isotopically disordered crystals. Physics - Uspekhi (Moscow) 45, 573–599 (2002)Google Scholar
  114. 114.
    M. Omini, A. Sparavigna, Heat transport in dielectric solids with diamond structure. Nuovo Cimento D19, 1537–1563 (1997)Google Scholar
  115. 115.
    A. Sparavigna, Influence of isotope scattering on the thermal conductivity of diamond. Phys. Rev. B65, 064305-5 (2002), ibid, B67, 144305-4 (2003)Google Scholar
  116. 116.
    W.C. Capinski, H.J. Maris, S. Tamura, Analysis of the effect of isotope scattering on the thermal conductivity of crystalline silicon. Phys. Rev. B 59, 10105–10110 (1999)CrossRefGoogle Scholar
  117. 117.
    M.G. Holland, Thermal conductivity, in Physics of III–V Compounds, in: Semiconductor and Semimetal, vol. 2, ed. by R.K. Willardson, A.C. Beer (Academic Press, New York, 1966), p. 3Google Scholar
  118. 118.
    J.W. Lyding, K. Hess, I.C. Kizilyalli, Reduction of hot electron degradation in metal oxide semiconductor transistors by deuterium processing. Apll. Phys. Lett. 68, 2526–2529 (1996)CrossRefGoogle Scholar
  119. 119.
    G. London, The difference in molecular volume of isotopes. Z. Phys. Chem. Neue Folge 16, 3021–3029 (1958)CrossRefGoogle Scholar
  120. 120.
    A.R. Ruffa, Thermal expansion and zer point displacement in isotopic lithium hydride. Phys. Rev. B 27, 1321–1325 (1983)CrossRefGoogle Scholar
  121. 121.
    A.A. Berezin, A.M. Ibrahim, Effects of the diversity of stable isotopes on properties of materials. Mater. Chem. Phys. 19, 420–437 (1988)CrossRefGoogle Scholar
  122. 122.
    R.C. Bushert, A.E. Merlin, S. Pace et al., Effect of isotope concentration on the lattice parameter of germanium perfect crystals. Phys. Rev. B 38, 5219–5221 (1988)CrossRefGoogle Scholar
  123. 123.
    E.E. Shpilrain, K.A. Yakimovich, T.N. Mel’nikova, Thermal Properties of Lithium Hydride-Deuteride and their Solutions with Lithium (Energoatomizdat, Moscow, 1983). (in Russian)Google Scholar
  124. 124.
    J.C. Noya, C.P. Hrrero, R. Ramirez, Isotope dependence of the lattice parameter of germanium from path-integral Monte Carlo simulations. Phys. Rev. B 56, 237–243 (1997)CrossRefGoogle Scholar
  125. 125.
    A. Kazimirov, J. Zegenhagen, M. Cardona, Isotopic mass and lattice constant X-ray standing wave measurements. Science 282, 930–932 (1998)CrossRefGoogle Scholar
  126. 126.
    Y. Ma, J.S. Tse, Ab initio detrmination of crystal lattice constant and thermal expansion for germanium isotopes. Solid State Commun. 143, 161–165 (2007)CrossRefGoogle Scholar
  127. 127.
    W. Banholzer, T. Anthony, Diamond properties as a function of isotopic composition. Thin Solid Films 212, 1–10 (1992)CrossRefGoogle Scholar
  128. 128.
    H. Holloway, K.C. Hass, M.A. Tamor et al., Isotopic dependence of lattice constants of diamond. Phys. Rev. B 44, 7123–7126 (1991)CrossRefGoogle Scholar
  129. 129.
    P. Pavone, S. Baroni, Dependence of the crystal lattice constant on isotopic composition. Solid State Commun. 90, 295–297 (1994)CrossRefGoogle Scholar
  130. 130.
    H. Holloway, K.C. Hass, M.A. Tamor et al., Isotopic dependence of lattice constants of diamond. ibid, B 45, 6353E (1992)Google Scholar
  131. 131.
    W.B. Zimmerman, Lattice constant dependence on isotopic composition in the \(^{7}\)Li(H, D) system. Phys. Rev. B 5, 4704–4707 (1972)CrossRefGoogle Scholar
  132. 132.
    T. Yamanaka, S. Morimoto, H. Kanda, Influence of the isotope ratio on the lattice constant of diamond. ibid B49, 9341–9343 (1994)CrossRefGoogle Scholar
  133. 133.
    R. Vogelgesang, A.K. Ramdas, S. Rodriguez et al., Brillouin and Raman in natural and isotopically controlled diamond. Phys. Rev. B 54, 3989–3999 (1996)CrossRefGoogle Scholar
  134. 134.
    N. Garo, A. Cantarero, T. Ruf et al., Dependence of the lattice parameters and energy gap of zinc-blende-type semiconductors on isotopic mass. Phys. Rev. B 54, 4732–7440 (1996)CrossRefGoogle Scholar
  135. 135.
    A. Debernardi, M. Cardona, Isotopic effect on the lattice constant in compound semiconductors by perturbation theory: An ab initio calculation. Phys. Rev. B 54, 11305–11310 (1996)CrossRefGoogle Scholar
  136. 136.
    H. Bilz, W. Kress, Phonon Dispersion Relations in Insulators (Springer, Berlin, 1979)CrossRefGoogle Scholar
  137. 137.
    H. Kressel (ed.), Semiconductor Devices for Optical Communications: Topics in Applied Physics, vol. 39 (Springer, Berlin, 1982)Google Scholar
  138. 138.
    P.C. Becker, M.R.X. de Barras, in Materials for Optoelectronics, ed. by M. Quilec (Kluver Academic Publishers, Boston, 1996)Google Scholar
  139. 139.
    A.W. Snyder, J.D. Love, Optical Waveguide Theory (Chapman and Hall Medical, London, 1996)Google Scholar
  140. 140.
    D. Marcuse, Light Transmission Optics (Van Nostrand, New York, 1972)Google Scholar
  141. 141.
    W.B. Allan, Fibre Optics Theory and Practice (Plenum Press, New York, 1973)Google Scholar
  142. 142.
    N.S. Kapany, Fiber Optics (Academic Press, New York, 1967)Google Scholar
  143. 143.
    J.A. Arnaud, Beam and Fibre Optics (Academic Press, New York, 1976)Google Scholar
  144. 144.
    D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1974)Google Scholar
  145. 145.
    J.E. Midwinter, Optical Fibers for Transmission (Wiley, New York, 1979)Google Scholar
  146. 146.
    R.W. Pohl, Introduction into Optics (Science, Moscow, 1947). (in Russian)Google Scholar
  147. 147.
    L.M. Zhuravleva, V.G. Plekhanov, Method of Fiber’s Manufacture. Patent of Russian Federation N 2302381, 10 (2007)Google Scholar
  148. 148.
    V.G. Plekhanov, Applications of isotope effects in solids. J. Mater. Sci. 38, 3341–3429 (2003)CrossRefGoogle Scholar
  149. 149.
    A. Jorio, G. Dresselhaus, M.S. Dresselhaus (eds.), Carbon Nanotubes. Topics Applied Physics, vol. 111 (Springer, Heidelberg, 2008)Google Scholar
  150. 150.
    M.S. Dresselhaus, P.C. Eklund, Phonons in carbon nanotubes. Adv. Phys. 49, 705–814 (2000)CrossRefGoogle Scholar
  151. 151.
    J.C. Charlier, P.C. Eklund, A.C. Ferrari, Electron and phonon properties of graphene: their relationship with carbon nanotubes, in [157], pp. 673–709Google Scholar
  152. 152.
    S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physics Properties (Imperial College Press, London, 2004)Google Scholar
  153. 153.
    V.G. Plekhanov, Manifestation of the strong nuclear interactions in the isotope-induced band-gap-opening of graphene, in Horizons in World Physics, vol. 281 (Nova Science Publishers, Inc., New York, 2013), pp. 197–202Google Scholar
  154. 154.
    M.Y. Han, B. Ozyilmaz, Y. Zhang, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805-4 (2007)Google Scholar
  155. 155.
    L.A. Ponomarenko, F. Schedin, M. Katsnelson et al., Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008)CrossRefGoogle Scholar
  156. 156.
    A. Savchenko, Transforming graphene. Science 323, 589–590 (2009)CrossRefGoogle Scholar
  157. 157.
    V.G. Plekhanov, Nuclear technology creation the quantum dots in graphene, in Transactions Humanitar Institute, Tallinn, 2011, pp. 66–70 (in Russian); V.G. Plekhanov, 2015 (unpublished results)Google Scholar
  158. 158.
    See Special Issue Nature (2009)Google Scholar
  159. 159.
    K.F. Mak, C.H. Lui, T.F. Heinz, Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys. Rev. Lett. 102, 256405-4 (2009)Google Scholar
  160. 160.
    E.V. Castro, K.S. Novoselov, S.V. Morozov, et al., Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. ibid 99 216802-4 (2007)Google Scholar
  161. 161.
    ZhH Ni, T. Yu, Y.H. Lu, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 3, 483–492 (2009)CrossRefGoogle Scholar
  162. 162.
    P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622–629 (1947)CrossRefGoogle Scholar
  163. 163.
    V.G. Plekhanov, Isotopical band-gap opening in graphene. Universal J. Phys. Appl. 10, 16–21 (2016)Google Scholar
  164. 164.
    A.K. Ramdas, S. Rodriguez, Lattice vibrations and electronic excitations in isotopically controlled diamonds. Phys. Stat. Sol. (b) 215, 71–80 (1999)CrossRefGoogle Scholar
  165. 165.
    S. Prawer, R.J. Nemanich, Raman spectroscopy of diamond and doped diamond. Phil. Transac. R. Soc. (Lond.) 362, 2537–2565 (2004)CrossRefGoogle Scholar
  166. 166.
    M.S. Dresselhaus, G. Dresselhaus, M. Hofman, Raman spectroscopy as a probe of graphene and carbon nanotubes. ibid, 366, 231–236 (2008)CrossRefGoogle Scholar
  167. 167.
    C. Casiraghi, A. Hartschuh, H. Qian et al., Raman spectroscopy of graphene edges. Nano Lett. 9, 1433–1441 (2009)CrossRefGoogle Scholar
  168. 168.
    Sh Chen, Q. Wu, C. Mishra, Thermal properties of isotopically engineered graphene. Nat. Mater. 11, 203–207 (2012)CrossRefGoogle Scholar
  169. 169.
    A. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)CrossRefGoogle Scholar
  170. 170.
    M. Huang, H. Yan, C. Chen et al., Raman spectroscopy of graphene under uniaxial stress: phonon softening and determination of crystallographic orientation. Proc. Natl. Acad. Sci. USA 106, 7304–7315 (2009)CrossRefGoogle Scholar
  171. 171.
    M. Farjam, H. Rafii-Tabar, Comment on “Band structure engineering of graphene by strain: First-principles calculations”. Phys. Rev. B 80, 167401-3 (2009)Google Scholar
  172. 172.
    T.M. Mohiuddin, A. Lombarto, R.R. Nair et al., Uniaxial strain in graphene by Raman spectroscopy: G peak splitting. Grűneisen parameter and sample orientation. ibid, B 79, 205433-8 (2009)Google Scholar
  173. 173.
    S.D. Costa, C. Fantini, A. Righi et al., Resonant Raman spectroscopy on enriched \(^{13}\)C carbon nanotubes. Carbon 49, 4919–4723 (20011)Google Scholar
  174. 174.
    J.F. Rodriguez-Nieva, R. Saito, S.D. Costa et al., Effect of \(^{13}\)C doping on the optical phonon modes in graphene: localization and Raman spectroscopy. Phys. Rev. B 85, 245406-8 (2012)Google Scholar
  175. 175.
    S. Bernard, E. Whiteway, V. Yu et al., Probing the experimental phonon dispersion of graphene using \(^{12}\)C and \(^{13}\)C isotopes. ibid, B 86, 085409-5 (2012)Google Scholar
  176. 176.
    E. del Corro, M. Kolbac, C. Fantini et al., Isotopic \(^{12}\)C/\(^{13}\)C effect on the resonant Raman spectrum of twisted bilayer graphene. ibid, B 88, 155436-5 (2013)Google Scholar
  177. 177.
    Z.C. Kun, L.Q. YU, T. Bo, et al., Isotope effect of the phonons mean free path in graphene by micro - Raman measurement, Science China. Phys. Mech. Astro. 57, 1817–1821 (2014)Google Scholar
  178. 178.
    K.C. Hass, M.A. Tamor, T.R. Anthony, W.F. Banholzer, Lattice dynamics and Raman spectra of isotopically mixed diamons. Phys. Rev. B 45, 7171–7182 (1992)CrossRefGoogle Scholar
  179. 179.
    E.G. Browman, Y.M. Kagan, Phonons in non-transition metals, in Dynamical Properties of Solids, vol. 1, ed. by G.K. Horton, A.A. Maradudin (North-Holland Publishing Company, 1974), Chapter 4Google Scholar
  180. 180.
    S. Bae, H. Kim, Y. Lee, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010)CrossRefGoogle Scholar
  181. 181.
    K.F. Mak, L. Ju, T.F. Heinz, Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Commun. 152, 1341–1349 (2012)CrossRefGoogle Scholar
  182. 182.
    V.G. Kravets, A.N. Grigorenko, R.R. Nair, Spectroscopic ellipsometry of graphene and exciton-shifted in a graphene transistor. Phys. Rev. B 81, 155413–7 (2010)CrossRefGoogle Scholar
  183. 183.
    H.A. Becerril, J. Man, Z. Liu, Evaluation of selection-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–469 (2008)CrossRefGoogle Scholar
  184. 184.
    S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–915 (2004)CrossRefGoogle Scholar
  185. 185.
    Z. Chen, B. Cotterell, W. Wang et al., A mechanical assestment of flexible optoelectronic devices. Thin Solid Films 394, 201–206 (2001)CrossRefGoogle Scholar
  186. 186.
    Z.Y. Yin, S.X. Wu, X.Z. Zhou et al., Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar sells. Small 6, 307–310 (2010)CrossRefGoogle Scholar
  187. 187.
    Z.Y. Yin, S.Y. Sun, T. Salim et al., Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4, 5263–5267 (2010)CrossRefGoogle Scholar
  188. 188.
    X. Wang, L.J. Zhi, K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–329 (2008)CrossRefGoogle Scholar
  189. 189.
    I. Jung, D. Dikin, S. Park et al., Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. J. Phys. Chem. 112, 20264–20268 (2008)Google Scholar
  190. 190.
    J.D. Fowler, M.J. Allen, V.C. Tung et al., Practical chemical sensors from chemically derived graphene. ACS Nano 3, 301–305 (2008)CrossRefGoogle Scholar
  191. 191.
    G. Lu, L.E. Ocola, J. Chen, Gas detection using low-temperature reduced graphene oxide sheets. Appl. Phys. Lett. 94, 083111–4 (2009)CrossRefGoogle Scholar
  192. 192.
    Q. Liu, Z.F. Liu, X.Y. Zhong, Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv. Funct. Mater. 19, 894–900 (2009)CrossRefGoogle Scholar
  193. 193.
    D. Pan, S. Wang, B. Zhoo et al., Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136–3141 (2009)CrossRefGoogle Scholar
  194. 194.
    E. Yoo, J. Kim, H.-s. Zhou et al., Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2281 (2008)CrossRefGoogle Scholar
  195. 195.
    L.E.F. Foa Torres, S. Roche, J.-C. Charlier, Introduction to Graphene-Based Nanomaterials (Cambridge, Cambridge University Press, 2014)Google Scholar
  196. 196.
    Ah Castro Net, F. Guinea, N.M.R. Peres et al., The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRefGoogle Scholar
  197. 197.
    X. Du, I. Sachko, A. Barker et al., Approaching dallistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–497 (2008)CrossRefGoogle Scholar
  198. 198.
    K. Novoselov, A. Geim, S. Morozov et al., Electric field effect in atomically thin carbon films. Science 306, 666–670 (2004)CrossRefGoogle Scholar
  199. 199.
    W.S. Hummers, R.E. Offeman, Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339–1343 (1958)CrossRefGoogle Scholar
  200. 200.
    W.W. Cai, R.D. Piner, F.J. Stademann et al., Synthesis and solid state NMR structural characterization of \(^{13}\)C labelled graphite oxide. Science 321, 1815–1816 (2008)CrossRefGoogle Scholar
  201. 201.
    W. Gao, L.B. Alemany, L. Ci et al., New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–405 (2009)CrossRefGoogle Scholar
  202. 202.
    J.H. Chen, W.G. Cullen, C. Jang et al., Defect scattering in graphene. Phys. Rev. Lett. 102, 236805–4 (2009)CrossRefGoogle Scholar
  203. 203.
    Z. Luo, P.M. Vora, E.J. Mele et al., Photoluminescence and band gap modulation in graphene oxide. Appl. Phys. Lett. 94, 111909–3 (2009)CrossRefGoogle Scholar
  204. 204.
    A. Nourbaksch, M. Cantoro, T. Vosch et al., Band gap opening in oxygen plasma treated graphene. Nanotechnol. 21, 435203 (2010)CrossRefGoogle Scholar
  205. 205.
    H. Huang, Z. Li, J. She et al., Oxygen density dependent band gap of reduced graphene oxide. J. Appl. Phys. 111, 054317–4 (2012)CrossRefGoogle Scholar
  206. 206.
    V. Singh, D. Joung, L. Zhai, Graphene based materials: past, present and future. Prog. Mat. Sci. 56, 1178–1271 (2011)CrossRefGoogle Scholar
  207. 207.
    A.C. Ferrari, J.C. Meyer, V. Scardaci et al., Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401–4 (2006)CrossRefGoogle Scholar
  208. 208.
    A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000)CrossRefGoogle Scholar
  209. 209.
    A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous and diamondlike carbon. Phys. Rev. B 64, 075414–7 (2001)CrossRefGoogle Scholar
  210. 210.
    T. Nakajima, N. Watanabe, Graphite Fluorides and Carbon-Fluorine Compounds (CRC, Roca Baton, 1991)Google Scholar
  211. 211.
    J. Ito, J. Nakamura, A. Natori, Semiconducting nature of the oxygen-adsorbed graphene sheet. J. Appl. Phys. 103, 113712–5 (2008)CrossRefGoogle Scholar
  212. 212.
    J.O. Sofo, A.S. Chauhari, Grpaphane Barber, A two-dimensional hydrocarbon. Phys. Rev. B 75, 153401–4 (2007)CrossRefGoogle Scholar
  213. 213.
    G.A. Olah, A. Molnar, Hydrocarbon Chemistry (Wiley-Inerscience, Hoboken, 2003)CrossRefGoogle Scholar
  214. 214.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)Google Scholar
  215. 215.
    V.G. Plekhanov, Isotope-based materials science. Universal J. Mat. Sci. 1, 87–147 (2013)Google Scholar
  216. 216.
  217. 217.
    G. Binning, H. Rohrer, Ch. Gerber et al., Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–60 (1982)CrossRefGoogle Scholar
  218. 218.
    G. Binning, H. Rohrer, Ch. Gerber et al., Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–181 (1982)CrossRefGoogle Scholar
  219. 219.
    J.A. Stroscio, W.J. Kaiser (eds.), Scanning Tunneling Microscopy (Academic Press, Boston, 1993)Google Scholar
  220. 220.
    R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy (Cambridge University Press, Cambridge, 1994)CrossRefGoogle Scholar
  221. 221.
    J.S. Blakemore, Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123–R181 (1982)CrossRefGoogle Scholar
  222. 222.
    S.M. Sze (ed.), High-Speed Semiconductor Devices (Wiley, New York, 1990)Google Scholar
  223. 223.
    M.A. Kastner, The single electron transistor. Rev. Mod. Phys. 64, 849–858 (1992)CrossRefGoogle Scholar
  224. 224.
    Y. Ono, A. Fujiwara, K. Nishiguchi et al., Manipulation and detection of single electrons for future information processing. J. Appl. Phys. 97, 031101–19 (2005)CrossRefGoogle Scholar
  225. 225.
    K.K. Likharev, T. Claeson, Single electronics. Sci. Am. (1991). (S.M)Google Scholar
  226. 226.
    H. Grabert, M.H. Devored (eds.), Single Charge Tunneling: Coulomb Blackade Phenomena in Nanostructures, NATO ASI Series B (Plenum Press, New York, 1992)Google Scholar
  227. 227.
    K. Barnham, D. Vvedensky (eds.), Low-Dimensional Semiconductor Structures (Cambridge University Press, Cambridge, 2009)Google Scholar
  228. 228.
    M.A. Storcio, M. Dutta, Phonons in Nanostructures (Cambridge University Press, Cambridge, 2005)Google Scholar
  229. 229.
    A. Kiravittaya, Rastelli, O.G. Schmidt, Advances quantum dot configurations. Rep. Prog. Phys. 72, 046502–046534 (2009)CrossRefGoogle Scholar
  230. 230.
    K. Seeger, Semiconductor Physics (Springer, New York, 1973)CrossRefGoogle Scholar
  231. 231.
    I.I. Abramov, E.G. Novik, Phys. Tech. Semic 33, 1388–1394 (1999). (in Russian)Google Scholar
  232. 232.
    N. Gerasimenko, Ju. Parhomenko, Silicon-Material of Nanoelectronics (Moscow, Technosphera, 2007). (in Russian)Google Scholar
  233. 233.
    A.V. Eletskii, Mechanical properties of carbon nanostructures and related materialls. Uspekhi Fiz. Nauk 177, 233–274 (2007). (in Russian)CrossRefGoogle Scholar
  234. 234.
    Ch. Kittel, Thermal Physics (Wiley, New York, 1969)Google Scholar
  235. 235.
    D. Bimberg, M. Grundman, N.N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999)Google Scholar
  236. 236.
    J. Bylander, T. Duty, P. Delsing, Current measurement by real time counting of single electrons. Nature 434, 6199–6211 (2005)CrossRefGoogle Scholar
  237. 237.
    V.G. Plekhanov, Isotope-Based Quantum Information (Springer, Heidelberg, 2012)CrossRefGoogle Scholar
  238. 238.
    H. Schoeller, G. Schoen, Mesoscopic quantum transport: resonant tunneling in the presence strong Coulomb interaction. Phys. Rev. B 50, 18436–18442 (1994)CrossRefGoogle Scholar
  239. 239.
    L.M. Zhuravleva, V.G. Plekhanov, Isotopetronics: fundamentals and applications, in Procedings of the International Conference (Sophia, Bulgaria, 2012), pp. 23–36Google Scholar
  240. 240.
    D.V. Averin, A.A. Odintsov, S.A. Vyshenskii, Ultimate accuracy of single-electron dc current standards. J. Appl. Phys. 73, 1297 (1993)CrossRefGoogle Scholar
  241. 241.
    W.G. van der Wiel, S. De Franceschi, J.M. Elzerman et al., Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–23 (2003)CrossRefGoogle Scholar
  242. 242.
    S.M. Reiman, M. Manninen, Electronic structure of quantum dots. ibid 74, 1283-1342 (2002)Google Scholar
  243. 243.
    P. Recher, B. Trauzel, Quantum dots and spin qubits in graphene. Nanotechnology 21, 302001–19 (2010)CrossRefGoogle Scholar
  244. 244.
    A.V. Rozhkov, G. Giavaras, Y.P. Bliokh, Electronic properties of mesoscopic graphene structures: charge confinement and control of spin and charge transport. Phys. Rep. 503, 77–114 (2011)CrossRefGoogle Scholar
  245. 245.
    J. Güttinger, F. Molitor, C. Stampfer et al., Transport through graphene quantum dots. Rep. Prog. Phys. 75, 126502–24 (2012)CrossRefGoogle Scholar
  246. 246.
    S. Das Sarma, S. Adam, E.H. Hwang et al., Electronic properties in two dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)CrossRefGoogle Scholar
  247. 247.
    J.S. Buch, Y. Yaish, M. Brink et al., Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots. Nano Lett. 5, 287–290 (2005)CrossRefGoogle Scholar
  248. 248.
    C. Stampfer, J. Güttinger, F. Molitor et al., Tunable Coulomb blockade in nanostructured graphene. Appl. Phys. Lett. 92, 012102 (2008)CrossRefGoogle Scholar
  249. 249.
    S. Schnez, F. Molitor, C. Stampfer et al., Observation of excited states in graphene quantum dot. ibid 94, 012107-5 (2009)CrossRefGoogle Scholar
  250. 250.
    W.N. Carr, Characteristics of a GaAs spontaneous infrared source with 40 percent efficience. IEEE Electron Dev. ED-12, 531–535 (1965)CrossRefGoogle Scholar
  251. 251.
    H.C. Casey, M.B. Panish, Heterostructure Lasers (Academic, New York, 1978)Google Scholar
  252. 252.
    P.S. Zoty, Quantum Well Lasers (Academic, Boston, 1993)Google Scholar
  253. 253.
    Y. Arakawa, in Confined Electrons and Photons: New Physics and Applications, Semiconductor Nano-Structure Lasers: Fundamentals and Applications. NATO Series B: Physics, vol. 340, ed. by E. Burstein, C. Weisbuch (New York, Plenum Press, 1995), pp. 647–673Google Scholar
  254. 254.
    L.A. Colderen, S.W. Corzine, Diode Lasers and Photonic Integrated Cicuits (Wiley, New York, 1995)Google Scholar
  255. 255.
    N.N. Ledentsov, V.M. Ustinov, V.A. Shchukin et al., Quantum dot heterostructures: Fabrication, properties, lasers. Fiz. and Teh. Polup. (Physics and Technics of Semicond.) 32, 385–410 (1998). (in Russian)Google Scholar
  256. 256.
    J. Faist, F. Capasso, D.L. Sivco et al., Quantum cascade laser. Science 264, 553–556 (1994)CrossRefGoogle Scholar
  257. 257.
    M. Beck, D. Hofstetter, T. Allen, Continuous wave operation of a mid-infrared semiconductor laser at room temperature. Science 295, 301–305 (2002)CrossRefGoogle Scholar
  258. 258.
    Z. Yin, X. Tang, A review of energy band gap engineering in III–V semiconductor alloys for mid-infrared laser applications. Solid St. Electron. 51, 6–15 (2005)CrossRefGoogle Scholar
  259. 259.
    V.M. Ustinov, A.E. Zukov, AYu. Egorov, N.A. Maleen, Quantum Dot Lasers (Oxford University Press, Oxford, 2003)CrossRefGoogle Scholar
  260. 260.
    J.M. Martinez-Duart, R.J. Martin-Palme, F. Aguello-Rueda, Nanotechnology for Microelectronics and Optoelectronics (Amsterdam, Elsevier, 2006)Google Scholar
  261. 261.
    E. Burstein, C. Weisbuch, Confined Electrons and Phonons: New Physics and Applications (Plenum Press, New York, 1995)CrossRefGoogle Scholar
  262. 262.
    F. Rossi, E. Molinari, The dominant role of Coulomb correlation. Phys. Rev. B 53, 16462–16473 (1996)CrossRefGoogle Scholar
  263. 263.
    L. Sirgu, Y. Oberli, L. Deriorgi et al., Excitonic lasing in semiconductor quantum wires. Phys. Rev. B 61, R10575–10584 (2000)CrossRefGoogle Scholar
  264. 264.
    M.H. Huang, S. Mao, H. Feick et al., Room temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2000)CrossRefGoogle Scholar
  265. 265.
    Y. Matsishima, S. Akiba, K. Sakaki, High-speed-response InGaAs/InP heterostructure avalanche photodiode with InGaAsP buffer layers. Electron. Lett. 18, 945–946 (1982)CrossRefGoogle Scholar
  266. 266.
    J.C. Campbell, W.T. Tsang, G.J. Qua, High-speed InP/InGaAsP/InGaAs avalanche photodiode grown by chemical beam epitaxy. IEEE QE 24, 496–500 (1988)CrossRefGoogle Scholar
  267. 267.
    L.E. Tarof, D.G. Knight, K.E. Fox et al., Planar InP/InGaAs avalanche photodetectors with partial charge sheet in device periphery. Appl. Phys. Lett. 57, 670–672 (1990)CrossRefGoogle Scholar
  268. 268.
    S. Lindsay, Introduction to Nanoscience (Oxford University Press, New York, 2009)Google Scholar
  269. 269.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000)Google Scholar
  270. 270.
    O. Morsch, Quantum Bits and Quantum Secrets: How Quantum Physics Revolutionizing Codes and Computers (Wiley, Weinham, 2008)Google Scholar
  271. 271.
    B. Schumacher, Quantum coding. Phys. Rev. A 51, 2738–2747 (1995)CrossRefGoogle Scholar
  272. 272.
    V.G. Plekhanov, Quantum information and quantum computation, in Transaction of Computer Science College (Tallinn, 2004), pp. 161–282. (in Russian)Google Scholar
  273. 273.
    B.B. Kadomtsev, Dynamics and Information (UFN, Moscow, 1997). (in Russian)Google Scholar
  274. 274.
    D.P. DiVincenzo, The physical implementation of quantum computation. Fortschr. der Physik (Prog. Phys.) 48, 771–783 (2000)CrossRefGoogle Scholar
  275. 275.
    C.A. Perez-Delgado, P. Kok, Quantum computers: definition and implementation. Phys. Rev. A 83, 012303–012315 (2011)CrossRefGoogle Scholar
  276. 276.
    G.E. Moore, Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965)Google Scholar
  277. 277.
    M. Lacham, M.E. Newman, C. Moore, Why any sufficiently advanced technology is indistinguishable from noise. Am. J. Phys. 72, 1290–1293 (2004)CrossRefGoogle Scholar
  278. 278.
    P.A.M. Dirac, The Principles of Quantum Mechanics (OxfordUniversity Press, Oxford, 1958)CrossRefGoogle Scholar
  279. 279.
    A. Barenco, C.H. Bennett, R. Cleve et al., Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)CrossRefGoogle Scholar
  280. 280.
    S.L. Braunstein, Quantum Computations, Encyclopedia of Applied Physics, Update (Wiley, New York, 1999), pp. 239–256Google Scholar
  281. 281.
    V.G. Plekhanov, Fundamentals and applications of isotope effect in solids. Prog. Mat. Sci. 51, 287–426 (2006)CrossRefGoogle Scholar
  282. 282.
    D. Aharonov, Quantum Computation, in Annual Reviews of Computational Physics VI, ed. by D. Stauffer (World Scientific, Singapore, 1998), pp. 143–184Google Scholar
  283. 283.
    D. Aharonov, Adiabatic quantum computer. SIAM J. Comput. 37, 166–194 (2007)CrossRefGoogle Scholar
  284. 284.
    D. Aharonov, Adiabatic Quantum Computer, Lanl arXiv:quant-ph/0405098
  285. 285.
    D. DiVincenzo, Topics in quantum computers, in Mesoscopic Electron Transport. NATO ASI Series E, vol. 345, ed. by L. Sohn, L. Kouwenhoven, G. Schon, (Dordrecht, Kluwer, 1997), p. 657CrossRefGoogle Scholar
  286. 286.
    D. DiVincenzo, Topics in Quantum Computers, vol. 1 (1996), p. 12, arXiv:cond-mat/9612125
  287. 287.
    D. DiVincenzo, Quantum computers and quantum coherence. J. Magn. Magn. Mats. 200, 202–216 (1999)CrossRefGoogle Scholar
  288. 288.
    H.-K. Lo, T. Spiller, S. Popescu (eds.), Introduction to Quantum Computation and Quantum Information (World Scientific, London, 1998)Google Scholar
  289. 289.
    T. Toffoli, Reversible computing, in Automata, Languages and Programming, Seventh Colloqium, vol. 84, Lecture Notes in Computer Science, ed. by J. de Bakker, J. van Leeuven (Springer, Berlin, 1980), pp. 632–644CrossRefGoogle Scholar
  290. 290.
    T. Toffoli, Bicontinuous extensions of invertible combinatorial functions. Math. Syst. Theory 14, 13–23 (1981)CrossRefGoogle Scholar
  291. 291.
    Pellizari T., Quantum computers, error-correction and networking: quantum optical approaches, in [297], pp. 270–311Google Scholar
  292. 292.
    J. Grashka, Quantum Computing (McGraw-Hill, New York, 1999)Google Scholar
  293. 293.
    D. Deutsch, Quantum computational networks. Proc. R. Soc. (Lond.) A 425, 73–90 (1989)CrossRefGoogle Scholar
  294. 294.
    J.W. Emsley, J.C. Lindon, NMR Spectroscopy Using Liquid Crystals Solvents (Pergamon Press, Oxford, 1975)Google Scholar
  295. 295.
    J. Stolze, D. Suter, Quantum Computing (A Short Course from Theory to Experiment) (Wiley, Weiheim, 2008)Google Scholar
  296. 296.
    L.M.K. Vandersypen, I.L. Chuang, NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2004)CrossRefGoogle Scholar
  297. 297.
    M. Levitt, Spin Dynamics (Basics of Nuclear Magnetic Resonance (Wiley, New York, 2001)Google Scholar
  298. 298.
    R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1987)Google Scholar
  299. 299.
    V.G. Plekhanov, Isotopes in Quantum Information (Palmarium Academic Publishing, Saarbrücken, 2013). (in Russian)Google Scholar
  300. 300.
    A. Ekert, P. Hayden, H. Inamori, Basic Concepts in Quantum Computation, Lanl, arXiv:quant.ph/0011013
  301. 301.
    I.L. Chuang, N. Gershenfeld, M. Kubinec, Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80, 3408–3411 (1998)CrossRefGoogle Scholar
  302. 302.
    I.L. Chuang, N. Gershenfeld, M. Kubinec, Bulk quantum computation with NMR: theory and experiment. Proc. R. Soc. (Lond.) A 454, 447–467 (1998)Google Scholar
  303. 303.
    L. Vandersypen, M. Steffen, G. Breita et al., Experimental realization of Shor’s quantum factoring algorithm using NMR. Nature 414, 883–887 (2001)CrossRefGoogle Scholar
  304. 304.
    D. Esteve, J.M. Raimond, J. Dalibard (eds.), QuantumCoherence and Information Processing (Elsevier, London, 2004)Google Scholar
  305. 305.
    I. Bloch, Ultracold quantum gases in optical lattices. Nat. Phys. 1, 23–27 (2005)CrossRefGoogle Scholar
  306. 306.
    T.C. Ralph, Quantum optical systems for the implementation of quantum information processing. Rep. Prog. Phys. 69, 853–898 (2006)CrossRefGoogle Scholar
  307. 307.
    A.M. Steane, The ion trap quantum information processor. Appl. Phys. B 64, 623–642 (1997)CrossRefGoogle Scholar
  308. 308.
    H. Häffner, C.F. Roos, R. Blatt, Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008)CrossRefGoogle Scholar
  309. 309.
    W. Paul, Electromagnetic traps for a charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990)CrossRefGoogle Scholar
  310. 310.
    J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)CrossRefGoogle Scholar
  311. 311.
    C. Monroe, D.M. Meekhof, B.E. King et al., Demonstration of a universal quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995)CrossRefGoogle Scholar
  312. 312.
    N. Yanofsky, M. Manucci, Quantum Computing for Computer Scientists (Cambridge University Press, Cambridge, 2008)CrossRefGoogle Scholar
  313. 313.
    D.J. Wineland, M. Barret, J. Britton et al., Quantum information processing with trapped ions. Phil. Trans. R. Soc. (Lond.) A 361, 1349–1362 (2003)Google Scholar
  314. 314.
    T. Spiller, Quantum information processing: cryptography, computation, and teleportation. Proc. IEEE 84, 1719–1746 (1996)CrossRefGoogle Scholar
  315. 315.
    V.V. Schmidt, Introduction in Physics of Superconductors (Science, Moscow, 1982). (in Russian)Google Scholar
  316. 316.
    Yu. Makhlin, G. Schön, A. Shnirman, Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)CrossRefGoogle Scholar
  317. 317.
    J.H. Platenberg, P.C. de Groot, C.J.P.M. Harmands, Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits. Nature (London) 447, 836–839 (2007)CrossRefGoogle Scholar
  318. 318.
    P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, Lanl, arXiv:quant-ph/9508027
  319. 319.
    P. Shor, Polynomial-time algorithms for prime factorization and dicrete logarithms on a quantum computer. IEEE Press SIAM J. Comput. 26, 1484–1509 (1997)CrossRefGoogle Scholar
  320. 320.
    K.A. Valiev, A.A. Kokin, Quantum Computers: Hopes and Reality (RC Dynamics, Moscow, 2001). (in Russian)Google Scholar
  321. 321.
    L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the 28th ACM Symposium on Theory of Computation (Association for Computing, Machinery, New York, 1999), pp. 212–219Google Scholar
  322. 322.
    L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Lanl, arXiv:quant-ph/9605043
  323. 323.
    L.K. Grover, Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)CrossRefGoogle Scholar
  324. 324.
    P. Benioff, The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by turing machine. J. Stat. Phys. 22, 563–591 (1980)CrossRefGoogle Scholar
  325. 325.
    P. Benioff, Quantum mechanical Hamiltonian models of Turing machine. ibid 29, 515–546 (1982)CrossRefGoogle Scholar
  326. 326.
    P. Benioff, Quantum mechanical models of turing machines that dissipate no energy. Phys. Rev. Lett. 48, 1681–1684 (1982)CrossRefGoogle Scholar
  327. 327.
    P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society Press, Los Alamitos, 1994), pp. 124–134Google Scholar
  328. 328.
    A.M. Steane, Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)CrossRefGoogle Scholar
  329. 329.
    J. Preskill, Reliable quantum computers. Proc. R. Soc. (Lond.) A 454, 385–410 (1998)CrossRefGoogle Scholar
  330. 330.
    B.E. Kane, Silicon-based quantum computation, Lanl, arXiv:quant-ph/0003031
  331. 331.
    B.E. Kane, Silicon-based quantum computation. Fortschr. Phys. 48, 1023–1041 (2000)CrossRefGoogle Scholar
  332. 332.
    A.M. Tyryshkin, S.A. Lyon, A.V. Astashkin, A.M. Raitsining, Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207–4 (2003)CrossRefGoogle Scholar
  333. 333.
    D.K. Wilson, G. Feher, Electron spin resonance on donors in silicon. Phys. Rev. 124, 1068–1083 (1961)CrossRefGoogle Scholar
  334. 334.
    B.E. Kane, N.S. McAlpine, A.S. Dzurak, B.G. Clark, Single spin measurement using single electron transistors to probe two-electron systems. Phys. Rev. B 61, 2961–2972 (2000)CrossRefGoogle Scholar
  335. 335.
    A.J. Skinner, M.E. Davenport, B.E. Kane, Hydrogenic spin quantum computing in silicon. Phys. Rev. Lett. 90, 087901–087904 (2003)Google Scholar
  336. 336.
    R. Vrijen, E. Yablonovich, K. Wang, Electron spin resonance transistors for quantum computing in Silicon-Germanium heterostructures. Phys. Rev. A 62, 12306–12309 (2000)CrossRefGoogle Scholar
  337. 337.
    I. Shlimak, V.I. Safarov, I. Vagner, Isotopically engineered Si/SiGe nanostructures as basic elements for a nuclear spin quantum computer. J. Phys. Condens. Matter 13, 6059–6065 (2001)Google Scholar
  338. 338.
    I. Shlimak, V. Ginodman, A. Butenko et al., Electron transport in a slot-gate Si MOSFET, Lanl, arXiv:cond-mat./0803.4432
  339. 339.
    I. Shlimak, I. Vagner, Quantum information processing based on \(^{31}\)P nuclear spin qubits in a qusi-one-dimensional \(^{28}\)Si nanowire. Phys. Rev. B 75, 045336–6 (2007)CrossRefGoogle Scholar
  340. 340.
    F. Schäffler, High-electron-mobility Si/SiGe heterostructures: influence of the relaxed buffer layer. Semicond. Sci. Technol. 7, 260–267 (1992)CrossRefGoogle Scholar
  341. 341.
    V.G. Plekhanov, Isotopes in Quantum Information, Preprint N 2 of Computer Science College (Tallinn, 2007). (in Russian)Google Scholar
  342. 342.
    V.G. Plekhanov, Manifestation and origin of the isotope effect, Lanl, arXiv:gen.phys.0907.2024
  343. 343.
    V.G. Plekhanov, Isotope Effect: Physics and Applications (Palmarium Academic Publishing, Saarbrücken, 2014). (in Russian)Google Scholar
  344. 344.
    Special issue of Solid State Communications, 149 (2009)Google Scholar
  345. 345.
    A. Olaya-Castro, N.F. Johnson, Quantum information processing in nanostructures, Lanl, arXiv/quant-ph/0406133Google Scholar
  346. 346.
    D. Gammon, D.G. Steel, Optical studies of single quantum dots. Phys. Today 55, 36–41 (2002)CrossRefGoogle Scholar
  347. 347.
    L. Quiroga, N.F. Johnson, Entangled Bell and Greenberg-Horne-Zeilinger state of excitons in coupled quantum dots. Phys. Rev. 83, 2270–2273 (1999)Google Scholar
  348. 348.
    D.D. Awschalom, L.C. Dassett, A.S. Dzurak, Quantum spintronics: engineering and manipulation atom-like spins in semiconductors. Science 339, 1174–1179 (2013)CrossRefGoogle Scholar
  349. 349.
    A.M. Stoneham, A.J. Fisher, P.T. Greenland, Optically driven silicon-based quantum gates with potential for high-temperature operation. J. Phys. Condens. Matter 15, L447–L451 (2003)CrossRefGoogle Scholar
  350. 350.
    K. Saeedi, S. Simmons, J.Z. Salvail, Room temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science 342, 830–833 (2013)CrossRefGoogle Scholar
  351. 351.
    S.Y. Kilin, Diamond-based quantum information technologies, in Physics, Chemistry and Applications of Nanostructure (World Scientific, Singapore, 2007), pp. 3–14Google Scholar
  352. 352.
    W.F. Koehl, B.B. Buckley, F.J. Ytrtnans et al., Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011)CrossRefGoogle Scholar
  353. 353.
    D.D. Awschalom, R. Epstein, R. Hanson, The diamond age spintronics. Sci. Am. 84 (2007)Google Scholar
  354. 354.
    J. Wrachtrup, F. Jelezko, Processing quantum information in diamond. J. Phys.: Condens. Matter 18, S807–S824 (2006)Google Scholar
  355. 355.
    M.V. Guruder Dutt, L. Childress, L. Jiang et al., Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316, 1312–1316 (2007)CrossRefGoogle Scholar
  356. 356.
    N.B. Manson, J.P. Harrison, M.J. Sellars, The nitrogen-vacancy center in diamond re-visited (2008), arXiv:cond-mat/0601360
  357. 357.
    M. Chen, M. Hirose, P. Cappelaro, Measurement of transverse hyperfine interaction by forbiden transitions. Phys. Rev. B 92, 020101-9 (2015)Google Scholar
  358. 358.
    L. du Preez, Thesis (University of the Witwatersrand, Johannesburg, 1965)Google Scholar
  359. 359.
    J.W. Steeds, S. Charles, T.J. Davis, Creation and mobility of self-interstitials in diamond. Diamond Rel. Mater. 8, 94–100 (1999)CrossRefGoogle Scholar
  360. 360.
    T. Gaebel, M. Domhan, I. Popa, Room temperature coherent control of coupled single spins in solid. Nat. Phys. 2, 408–413 (2006)CrossRefGoogle Scholar
  361. 361.
    E. Rej, T. Gaebel, T. Boele et al., Hyperpolarized nanodiamond with long relaxation time, arXiv:cond-mat/1502.06214

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Mathematics and Physics DepartmentComputer Science CollegeTallinnEstonia

Personalised recommendations