Nanoparticles for Ultrasound-Guided Imaging of Cell Implantation

Chapter

Abstract

Regenerative medicine uses stem cells to repair damaged tissue. Imaging plays a key role in this process because imaging can reveal the location of cells and how they are interacting with the surrounding tissue. Ultrasound imaging is particularly powerful because it offers excellent temporal and spatial resolution and is ubiquitously present at low cost. Here, we explain different types of ultrasound imaging in tandem with stem cell therapy. The two main classes are direct imaging that labels a stem cell with an exogenous contrast agent and indirect imaging in which a reporter gene expresses a protein that can then be targeted with a contrast agent as substrate. We also describe photoacoustic imaging as one of the latest techniques for increasing acoustic contrast in imaging. Finally, we close with some perspectives on growth and needs in the field.

Keywords

Stem cell Regenerative medicine Ultrasound Nanoparticle Molecular imaging Image-guided delivery Theranostics 

References

  1. 1.
    Daar AS, Greenwood HL. A proposed definition of regenerative medicine. J Tissue Eng Regen Med. 2007;1(3):179–84.CrossRefPubMedGoogle Scholar
  2. 2.
    Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3(1):1–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Lane SW, Williams DA, Watt FM. Modulating the stem cell niche for tissue regeneration. Nat Biotechnol. 2014.Google Scholar
  4. 4.
    George JC. Stem cell therapy in acute myocardial infarction: a review of clinical trials. Transl Res. 2010;155(1):10–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 2011;378(9806):1847–57.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science. 2010;329(5995): 1078–81.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest. 2010;120(1):11.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T, et al. Safety of autologous bone marrow‐derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med. 2011;5(2):146–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Orlando G, Baptista P, Birchall M, De Coppi P, Farney A, Guimaraes‐Souza NK, et al. Regenerative medicine as applied to solid organ transplantation: current status and future challenges. Transpl Int. 2011;24(3):223–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.CrossRefPubMedGoogle Scholar
  11. 11.
    Kircher MF, Gambhir SS, Grimm J. Noninvasive cell-tracking methods. Nat Rev Clin Pract. 2011;8(11):677–88.Google Scholar
  12. 12.
    Atala A, Allickson J. Translational regenerative medicine. Burlington: Elsevier Science; 2014. ScienceDirect. Restricted to UC campuses http://uclibs.org/PID/267828
  13. 13.
    Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004;17(7):484–99.CrossRefPubMedGoogle Scholar
  14. 14.
    Khurana A, Chapelin F, Beck G, Lenkov OD, Donig J, Nejadnik H, et al. Iron administration before stem cell harvest enables mr imaging tracking after transplantation. Radiology. 2013;269(1):186–97.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fu Y, Kraitchman DL. Stem cell labeling for noninvasive delivery and tracking in cardiovascular regenerative therapy. Expert Rev Cardiovasc Ther. 2010;8(8):1149–60.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bunce S, Moore A, Hough A. M-mode ultrasound: a reliable measure of transversus abdominis thickness? Clin Biomech. 2002;17(4):315–7.CrossRefGoogle Scholar
  17. 17.
    Adler DD, Carson PL, Rubin JM, Quinn-Reid D. Doppler ultrasound color flow imaging in the study of breast cancer: preliminary findings. Ultrasound Med Biol. 1990;16(6):553–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007.Google Scholar
  19. 19.
    Nguyen PK, Lan F, Wang Y, Wu JC. Imaging: guiding the clinical translation of cardiac stem cell therapy. Circ Res. 2011;109(8):962–79.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rodriguez-Porcel M, Gheysens O, Chen IY, Wu JC, Gambhir SS. Image-guided cardiac cell delivery using high-resolution small-animal ultrasound. Mol Ther. 2005;12(6):1142–7.CrossRefPubMedGoogle Scholar
  21. 21.
    Vunjak-Novakovic G, Lui KO, Tandon N, Chien KR. Bioengineering heart muscle: a paradigm for regenerative medicine. Annu Rev Biomed Eng. 2011;13:245–67.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH, Boerman OC, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol. 2005;23(11):1407–13.CrossRefPubMedGoogle Scholar
  23. 23.
    Bara C, Ghodsizad A, Niehaus M, Makoui M, Piechaczek C, Martin U, et al. In vivo echocardiographic imaging of transplanted human adult stem cells in the myocardium labeled with clinically applicable CliniMACS nanoparticles. J Am Soc Echocardiogr. 2006;19(5):563–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Kompa AR, Summers RJ. Lidocaine and surgical modification reduces mortality in a rat model of cardiac failure induced by coronary artery ligation. J Pharmacol Toxicol Methods. 2000;43(3):199–203.CrossRefPubMedGoogle Scholar
  25. 25.
    Casciaro S, Conversano F, Ragusa A, Ada Malvindi M, Franchini R, Greco A, et al. Optimal enhancement configuration of silica nanoparticles for ultrasound imaging and automatic detection at conventional diagnostic frequencies. Invest Radiol. 45(11):715–23.Google Scholar
  26. 26.
    Martinez HP, Kono Y, Blair SL, Sandoval S, Wang-Rodriguez J, Mattrey RF, et al. Hard shell gas-filled contrast enhancement particles for colour Doppler ultrasound imaging of tumors. Med Chem Commun. 2010;1(4):266–70.CrossRefGoogle Scholar
  27. 27.
    Jokerst JV, Khademi C, Gambhir SS. Intracellular aggregation of multimodal silica nanoparticles for ultrasound-guided stem cell implantation. Sci Transl Med. 2013;5(177):177ra35.CrossRefPubMedGoogle Scholar
  28. 28.
    Kempen PJ, Greasley S, Parker KA, Campbell JL, Chang H-Y, Jones JR, et al. Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Theranostics. 2015;5(6):631.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Slowing II, Trewyn BG, Giri S, Lin VSY. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater. 2007;17(8):1225–36.CrossRefGoogle Scholar
  30. 30.
    Liu J, Stace-Naughton A, Jiang X, Brinker CJ. Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles. J Am Chem Soc. 2009;131(4):1354–5.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yaghoubi SS, Jensen MC, Satyamurthy N, Budhiraja S, Paik D, Czernin J, et al. Noninvasive detection of therapeutic cytolytic T cells with 18F–FHBG PET in a patient with glioma. Nat Clin Pract Oncol. 2008;6(1):53–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Brown AB, Yang W, Schmidt NO, Carroll R, Leishear KK, Rainov NG, et al. Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin. Hum Gene Ther. 2003;14(18):1777–85.CrossRefPubMedGoogle Scholar
  33. 33.
    Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 2004; 303(5662):1352–5.CrossRefPubMedGoogle Scholar
  34. 34.
    Wang L, Martin DR, Baker HJ, Zinn KR, Kappes JC, Ding H, et al. Neural progenitor cell transplantation and imaging in a large animal model. Neurosci Res. 2007;59(3):327–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Cui W, Tavri S, Benchimol MJ, Itani M, Olson ES, Zhang H, et al. Neural progenitor cells labeling with microbubble contrast agent for ultrasound imaging in vivo. Biomaterials. 2013;34(21):4926–35.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Shapiro MG, Goodwill PW, Neogy A, Yin M, Foster FS, Schaffer DV, et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol. 2014;9(4):311–6.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kuliszewski MA, Fujii H, Liao C, Smith AH, Xie A, Lindner JR, et al. Molecular imaging of endothelial progenitor cell engraftment using contrast-enhanced ultrasound and targeted microbubbles. Cardiovasc Res. 2009;83(4):653.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jokerst JV, Thangaraj M, Kempen PJ, Sinclair R, Gambhir SS. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano. 2012;6(7):5920–30.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang C, Ma X, Ye S, Cheng L, Yang K, Guo L, et al. Protamine functionalized single‐walled carbon nanotubes for stem cell labeling and in vivo raman/magnetic resonance/photoacoustic triple‐modal imaging. Adv Funct Mater. 2012;22(11):2363–75.CrossRefGoogle Scholar
  40. 40.
    Nam SY, Ricles LM, Suggs LJ, Emelianov SY. In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers. PLoS One. 2012;7(5), e37267.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Galanzha EI, Kim J-W, Zharov VP. Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in vivo detection and killing of circulating cancer stem cells. J Biophotonics. 2009;2(12):725.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hu X, Wei CW, Xia J, Pelivanov I, O'Donnell M, Gao X. Trapping and photoacoustic detection of CTCs at the single cell per milliliter level with magneto‐optical coupled nanoparticles. Small. 2013;9(12):2046–52.CrossRefPubMedGoogle Scholar
  43. 43.
    Chen YS, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011;11(2):348–54.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Atala A, Allickson J. Translational regenerative medicine. London, UK: Academic Press; 2014.Google Scholar
  45. 45.
    Wang J, Jokerst JV. Stem cell imaging: tools to improve cell delivery and viability. Stem Cell Int. 2016. In press.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of NanoEngineeringUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations