Normalised Cross Sections

Chapter
Part of the Springer Tracts in Modern Physics book series (STMP, volume 268)

Abstract

A second possibility to reduce uncertainties caused by systematic effects consists in performing shape comparisons only. In this case the measured and the predicted distributions are normalised to the integral over the whole or a part of the investigated phase space. Luminosity uncertainties are irrelevant in this case and JEC, JER, QCD scale, or PDF effects cancel at least partially.

References

  1. 1.
    CMS Collaboration, Search for contact interactions using the inclusive jet \(p_T\) spectrum in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. Phys. Rev. D 87, 052017 (2013). doi:10.1103/PhysRevD.87.052017. arXiv:1301.5023
  2. 2.
    CDF Collaboration, Inclusive jet cross section in \({\bar{p} p}\) collisions at \(\sqrt{s}=1.8\) TeV. Phys. Rev. Lett. 77, 438 (1996). doi:10.1103/PhysRevLett.77.438. arXiv:hep-ex/9601008
  3. 3.
    CDF Collaboration, Inclusive jet cross-section in \(\bar{p}p\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. Lett. 68, 1104 (1992). doi:10.1103/PhysRevLett.68.1104
  4. 4.
    D0 Collaboration, Limits on quark compositeness from high-energy jets in \(\bar{p}p\) collisions at 1.8 TeV. Phys. Rev. D 62, 031101 (2000). doi:10.1103/PhysRevD.62.031101. arXiv:hep-ex/9912023
  5. 5.
    CMS Collaboration, Search for jet extinction in the inclusive jet-\(p_t\) spectrum from proton-proton collisions at \(\sqrt{s} =\) 8 TeV. Phys. Rev. D 90, 032005 (2014). doi:10.1103/PhysRevD.90.032005. arXiv:1405.7653
  6. 6.
    C. Kilic et al., Jet extinction from nonperturbative quantum gravity effects. Phys. Rev. D 89, 016003 (2014). doi:10.1103/PhysRevD.89.016003. arXiv:1207.3525 ADSCrossRefGoogle Scholar
  7. 7.
    B.L. Combridge, J. Kripfganz, J. Ranft, Hadron production at large transverse momentum and QCD. Phys. Lett. B 70, 234 (1977). doi:10.1016/0370-2693(77)90528-7 ADSCrossRefGoogle Scholar
  8. 8.
    R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (Cambridge University Press, Cambridge, 1996)Google Scholar
  9. 9.
    G. Dissertori, I.G. Knowles, M. Schmelling, Quantum Chromodynamics: High Energy Experiments and Theory, 2nd edn. (Oxford University Press, 2009)Google Scholar
  10. 10.
    B.L. Combridge, C.J. Maxwell, Untangling large p(T) hadronic reactions. Nucl. Phys. B 239, 429 (1984). doi:10.1016/0550-3213(84)90257-8 ADSCrossRefGoogle Scholar
  11. 11.
    CMS Collaboration, Measurement of Dijet angular distributions and search for quark compositeness in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. Phys. Rev. Lett. 106, 201804 (2011). doi:10.1103/PhysRevLett.106.201804. arXiv:1102.2020
  12. 12.
    ATLAS Collaboration, Search for new physics in dijet mass and angular distributions in \(pp\) collisions at \(\sqrt{s} = 7\) TeV measured with the ATLAS detector. New J. Phys. 13 (2011) 053044. doi:10.1088/1367-2630/13/5/053044. arXiv:1103.3864
  13. 13.
    CMS Collaboration, Search for quark compositeness in dijet angular distributions from \(pp\) collisions at \(\sqrt{s}=7\) TeV. JHEP 05, 055 (2012). doi:10.1007/JHEP05(2012)055. arXiv:1202.5535
  14. 14.
    ATLAS Collaboration, ATLAS search for new phenomena in dijet mass and angular distributions using \(pp\) collisions at \(\sqrt{s}=7\) TeV. JHEP 01 (2013) 029. doi:10.1007/JHEP01(2013)029. arXiv:1210.1718
  15. 15.
    CMS Collaboration, Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at \(\sqrt{s} =\) 8 TeV. Phys. Lett. B 746, 79 (2015). doi:10.1016/j.physletb.2015.04.042. arXiv:1411.2646
  16. 16.
    ATLAS Collaboration, Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at \(\sqrt{s} = 8\) TeV Measured with the ATLAS Detector. Phys. Rev. Lett. 114 (2015) 221802, doi:10.1103/PhysRevLett.114.221802. arXiv:1504.00357
  17. 17.
    J. Gao et al., Next-to-leading QCD effect to the quark compositeness search at the LHC. Phys. Rev. Lett. 106, 142001 (2011). doi:10.1103/PhysRevLett.106.142001. arXiv:1101.4611 ADSCrossRefGoogle Scholar
  18. 18.
    J. Gao, C.S. Li, C.P. Yuan, NLO QCD corrections to dijet production via quark contact interactions. JHEP 07, 037 (2012). doi:10.1007/JHEP07(2012)037. arXiv:1204.4773 ADSCrossRefGoogle Scholar
  19. 19.
    S. Dittmaier, A. Huss, C. Speckner, Weak radiative corrections to dijet production at hadron colliders. JHEP 11, 095 (2012). doi:10.1007/JHEP11(2012)095. arXiv:1210.0438 ADSCrossRefGoogle Scholar
  20. 20.
    S. Catani et al., New clustering algorithm for multi-jet cross-sections in e+ e- annihilation. Phys. Lett. B 269, 432 (1991). doi:10.1016/0370-2693(91)90196-W ADSCrossRefGoogle Scholar
  21. 21.
    G. Marchesini, B.R. Webber, Monte Carlo simulation of general hard processes with coherent QCD radiation. Nucl. Phys. B 310, 461 (1988). doi:10.1016/0550-3213(88)90089-2 ADSCrossRefGoogle Scholar
  22. 22.
    S. Gieseke, P. Stephens, B. Webber, New formalism for QCD parton showers. JHEP 12, 045 (2003). doi:10.1088/1126-6708/2003/12/045. arXiv:hep-ph/0310083 ADSCrossRefGoogle Scholar
  23. 23.
    MARK-J Collaboration, Discovery of three-jet events and a test of quantum chromodynamics at PETRA. Phys. Rev. Lett. 43 (1979) 830. doi:10.1103/PhysRevLett.43.830
  24. 24.
    TASSO Collaboration, Evidence for planar events in \(e^+e^-\) annihilation at high energies. Phys. Lett. B. 86 (1979) 243. doi:10.1016/0370-2693(79)90830-X
  25. 25.
    PLUTO Collaboration, Evidence for gluon bremsstrahlung in \(e^+e^-\) annihilations at high energies. Phys. Lett. B 86 (1979) 418. doi:10.1016/0370-2693(79)90869-4
  26. 26.
    JADE Collaboration, Observation of planar three-jet events in \(e^+e^-\) annihilation and evidence for gluon bremsstrahlung. Phys. Lett. B 91, 142 (1980). doi:10.1016/0370-2693(80)90680-2
  27. 27.
    JADE Collaboration, Test of fragmentation models by comparison with three-jet events produced in \(e^+e^- \rightarrow \) hadrons. Phys. Lett. B 134, 275 (1984). doi:10.1016/0370-2693(84)90687-7
  28. 28.
    TASSO Collaboration, A study of three jet events in \(e^+e^-\) annihilation into hadrons at 34.6 GeV center-of-mass energy. Z. Phys. C 29 (1985) 29. doi:10.1007/BF01571375
  29. 29.
    TPC/Two Gamma Collaboration, Tests of models for quark and gluon fragmentation in \(e^+e^-\) annihilation at \(\sqrt{s} = 29\) GeV. Z. Phys. C 28, 31 (1985). doi:10.1007/BF01550246 CrossRefGoogle Scholar
  30. 30.
    TPC/Two Gamma Collaboration, Tests of models for parton fragmentation using three jet events in \(e^+e^-\) annihiliation at \(\sqrt{s} = 29\) GeV. Phys. Rev. Lett. 54, 270 (1985). doi:10.1103/PhysRevLett.54.270. [Erratum: Phys. Rev. Lett. 54,1209(1985)]
  31. 31.
    P.D. Sheldon et al., Comparison of the particle flow in \(q\bar{q}g\) and \(q\bar{q}\gamma \) events in \(e^+e^-\) annihilation. Phys. Rev. Lett. 57, 945 (1986). doi:10.1103/PhysRevLett.57.945
  32. 32.
    P.D. Sheldon et al., A comparison of the particle flow in three jet and radiative two jet events from \(e^+e^-\) annihilation at \(e\)(CM) = 29 GeV. Phys. Rev. Lett. 57, 1398 (1986). doi:10.1103/PhysRevLett.57.1398 ADSCrossRefGoogle Scholar
  33. 33.
    OPAL Collaboration, A Study of coherence of soft gluons in hadron jets. Phys. Lett. B 247, 617 (1990). doi:10.1016/0370-2693(90)91911-T
  34. 34.
    L3 Collaboration, Evidence for gluon interference in hadronic Z decays. Phys. Lett. B 353, 145 (1995). doi:10.1016/0370-2693(95)00552-V ADSCrossRefGoogle Scholar
  35. 35.
    C. Berger, Results from the PLUTO experiment on \(e^+e^-\) reactions at high energies. eConf C790823, 19 (1979)Google Scholar
  36. 36.
    C. Berger, Elementarteilchenphysik: Von den Grundlagen zu den modernen Experimenten, vol. 9, 3 edn. (Springer Spektrum, 2014)Google Scholar
  37. 37.
    CMS Collaboration, Probing color coherence effects in pp collisions at \(\sqrt{s} = 7\) TeV. Eur. Phys. J. C 74, 2901 (2014). doi:10.1140/epjc/s10052-014-2901-8. arXiv:1311.5815
  38. 38.
    CDF Collaboration, Evidence for color coherence in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. D 50, 5562 (1994). doi:10.1103/PhysRevD.50.5562
  39. 39.
    D0 Collaboration, Color coherent radiation in multijet events from \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Lett. B 414, 419 (1997). doi:10.1016/S0370-2693(97)01190-8. arXiv:hep-ex/9706012
  40. 40.
    D0 Collaboration, Measurement of angular correlations of jets at \(\sqrt{s}=1.96\) TeV and determination of the strong coupling at high momentum transfers. Phys. Lett. B 718, 56 (2012). doi:10.1016/j.physletb.2012.10.003. arXiv:1207.4957 ADSCrossRefGoogle Scholar
  41. 41.
    T. Sjöstrand, M. van Zijl, A multiple interaction model for the event structure in hadron collisions. Phys. Rev. D 36, 2019 (1987). doi:10.1103/PhysRevD.36.2019 ADSCrossRefGoogle Scholar
  42. 42.
    B. Humpert, R. Odorico, Multiparton scattering and QCD radiation as sources of four jet events. Phys. Lett. B 154, 211 (1985). doi:10.1016/0370-2693(85)90587-8 ADSCrossRefGoogle Scholar
  43. 43.
    L. Ametller, N. Paver, D. Treleani, Possible signature of multiple parton interactions in collider four jet events. Phys. Lett. B 169, 289 (1986). doi:10.1016/0370-2693(86)90668-4 ADSCrossRefGoogle Scholar
  44. 44.
    E.L. Berger, C.B. Jackson, G. Shaughnessy, Characteristics and Estimates of double parton scattering at the large hadron collider. Phys. Rev. D 81, 014014 (2010). doi:10.1103/PhysRevD.81.014014. arXiv:0911.5348 ADSCrossRefGoogle Scholar
  45. 45.
    M. Diehl, D. Ostermeier, A. Schäfer, Elements of a theory for multiparton interactions in QCD. JHEP 03, 089 (2012). doi:10.1007/JHEP03(2012)089. arXiv:1111.0910 ADSCrossRefMATHGoogle Scholar
  46. 46.
    Axial Field Spectrometer Collaboration, Double parton scattering in \(p p\) collisions at \(\sqrt{s}=63\)-GeV. Z. Phys. C 34, 163 (1987). doi:10.1007/BF01566757
  47. 47.
    UA2 Collaboration, A study of multi-jet events at the CERN anti-p p collider and a search for double parton scattering. Phys. Lett. B 268, 145 (1991). doi:10.1016/0370-2693(91)90937-L
  48. 48.
    CDF Collaboration, Study of four jet events and evidence for double parton interactions in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. D 47, 4857 (1993). doi:10.1103/PhysRevD.47.4857
  49. 49.
    CMS Collaboration, Measurement of four-jet production in proton-proton collisions at \(\sqrt{s} = 7\) TeV. Phys. Rev. D 89, 092010 (2014). doi:10.1103/PhysRevD.89.092010. arXiv:1312.6440
  50. 50.
    CDF Collaboration, Double parton scattering in \(\bar{p}p\) collisions at \(\sqrt{s} = 1.8 \) TeV. Phys. Rev. D 56, 3811 (1997). doi:10.1103/PhysRevD.56.3811
  51. 51.
    D0 Collaboration, Double parton interactions in photon+3 jet events in \(p p^-\) bar collisions \(\sqrt{s}=1.96\) TeV. Phys. Rev. D 81, 052012 (2010). doi:10.1103/PhysRevD.81.052012. arXiv:0912.5104 ADSCrossRefGoogle Scholar
  52. 52.
    D0 Collaboration, Double parton interactions in photon + 3 jet and photon + b/c jet + 2 jet events in ppbar collisions at sqrts=1.96 TeV. Phys. Rev. D 89, 072006 (2014). doi:10.1103/PhysRevD.89.072006. arXiv:1402.1550 ADSCrossRefGoogle Scholar
  53. 53.
    ATLAS Collaboration, Measurement of hard double-parton interactions in \(W(\rightarrow l\nu )\)+ 2 jet events at \(\sqrt{s}\)=7 TeV with the ATLAS detector. New J. Phys. 15 (2013) 033038. doi:10.1088/1367-2630/15/3/033038. arXiv:1301.6872
  54. 54.
    CMS Collaboration, Study of double parton scattering using W + 2-jet events in proton-proton collisions at \(\sqrt{s}\) = 7 TeV. JHEP 03, 032 (2014). doi:10.1007/JHEP03(2014) 032. arXiv:1312.5729
  55. 55.
    C. Goebel, F. Halzen, D.M. Scott, Double Drell-Yan annihilations in hadron collisions: novel tests of the constituent picture. Phys. Rev. D 22, 2789 (1980). doi:10.1103/PhysRevD.22.2789 ADSCrossRefGoogle Scholar
  56. 56.
    M. Mekhfi, Multiparton processes: an application to double Drell-Yan. Phys. Rev. D 32, 2371 (1985). doi:10.1103/PhysRevD.32.2371 ADSCrossRefGoogle Scholar
  57. 57.
    M.W. Krasny, W. Placzek, On the contribution of the double Drell-Yan process to WW and ZZ production at the LHC. arXiv:1501.04569
  58. 58.
    A. Kulesza, W.J. Stirling, Like sign \(W\) boson production at the LHC as a probe of double parton scattering. Phys. Lett. B 475, 168 (2000). doi:10.1016/S0370-2693(99)01512-9. arXiv:hep-ph/9912232 ADSCrossRefGoogle Scholar
  59. 59.
    M. Bähr, M. Myska, M.H. Seymour, A. Siodmok, Extracting \(\sigma _{\rm {effective}}\) from the CDF gamma+3jets measurement. JHEP 03, 129 (2013). doi:10.1007/JHEP03(2013)129. arXiv:1302.4325 ADSCrossRefGoogle Scholar
  60. 60.
    D. Treleani, Double parton scattering, diffraction and effective cross section. Phys. Rev. D 76, 076006 (2007). doi:10.1103/PhysRevD.76.076006. arXiv:0708.2603 ADSCrossRefGoogle Scholar
  61. 61.
    CMS Collaboration, Double Parton Scattering cross section limit from same-sign \(W\) boson pair production in di-muon final state at LHC. Technical report, CMS-PAS-FSQ-13-001, CERN, 2015Google Scholar
  62. 62.
    V. Del Duca, C.R. Schmidt, Dijet production at large rapidity intervals. Phys. Rev. D 49, 4510 (1994). doi:10.1103/PhysRevD.49.4510. arXiv:hep-ph/9311290 ADSCrossRefGoogle Scholar
  63. 63.
    V. Del Duca, C.R. Schmidt, BFKL versus O(\(\alpha _s^3\)) corrections to large rapidity dijet production. Phys. Rev. D 51, 2150 (1995). doi:10.1103/PhysRevD.51.2150. arXiv:hep-ph/9407359 ADSCrossRefGoogle Scholar
  64. 64.
    D0 Collaboration, The azimuthal decorrelation of jets widely separated in rapidity. Phys. Rev. Lett. 77, 595 (1996). doi:10.1103/PhysRevLett. 77.595. arXiv:hep-ex/9603010
  65. 65.
    D0 Collaboration, Recent run II QCD results from D0. AIP Conf. Proc. 753, 92 (2005). doi:10.1063/1.1896692. arXiv:hep-ex/0411025
  66. 66.
    D0 Collaboration, Measurement of dijet azimuthal decorrelations at central rapidities in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.96\) TeV. Phys. Rev. Lett. 94, 221801 (2005). doi:10.1103/PhysRevLett.94.221801. arXiv:hep-ex/0409040
  67. 67.
    M. Wobisch, K. Rabbertz, Dijet azimuthal decorrelations for \(\Delta \phi _{\rm {dijet}} < 2\pi /3\) in perturbative QCD. JHEP 12, 024 (2015). doi:10.1007/JHEP12(2015)024. arXiv:1505.05030
  68. 68.
    Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order. Phys. Rev. Lett. 88, 122003 (2002). doi:10.1103/PhysRevLett.88.122003. arXiv:hep-ph/0110315 ADSCrossRefGoogle Scholar
  69. 69.
    Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron hadron collisions. Phys. Rev. D 68, 094002 (2003). doi:10.1103/PhysRevD.68.094002. arXiv:hep-ph/0307268 ADSCrossRefGoogle Scholar
  70. 70.
    CMS Collaboration, Dijet azimuthal decorrelations in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. Phys. Rev. Lett. 106, 122003 (2011). doi:10.1103/PhysRevLett.106.122003. arXiv:1101.5029
  71. 71.
    ATLAS Collaboration, Measurement of Dijet Azimuthal Decorrelations in \(pp\) Collisions at \(\sqrt{s}=7\) TeV. Phys. Rev. Lett. 106 (2011) 172002. doi:10.1103/PhysRevLett.106.172002. arXiv:1102.2696
  72. 72.
    CMS Collaboration, Measurement of dijet azimuthal decorrelations in pp collisions at \(\sqrt{s} = 8\) TeV, CMS-PAPER-SMP-14-015 (2016). Accepted by Eur. Phys. J. CGoogle Scholar
  73. 73.
    A. Banfi, M. Dasgupta, Y. Delenda, Azimuthal decorrelations between QCD jets at all orders. Phys. Lett. B 665, 86 (2008). doi:10.1016/j.physletb.2008.05.065. arXiv:0804.3786 ADSCrossRefGoogle Scholar
  74. 74.
    P. Sun, C.P. Yuan, F. Yuan, Soft gluon resummations in dijet azimuthal angular correlations in hadronic collisions. Phys. Rev. Lett. 113, 232001 (2014). doi:10.1103/PhysRevLett.113.232001. arXiv:1405.1105 ADSCrossRefGoogle Scholar
  75. 75.
    P. Sun, C.P. Yuan, F. Yuan, Transverse momentum resummation for dijet correlation in hadronic collisions. Phys. Rev. D 92, 094007 (2015). doi:10.1103/PhysRevD.92.094007. arXiv:1506.06170
  76. 76.
    M.H. Seymour, Jet shapes in hadron collisions: higher orders, resummation and hadronization. Nucl. Phys. B 513, 269 (1998). doi:10.1016/S0550-3213(97)00711-6. arXiv:hep-ph/9707338 ADSCrossRefGoogle Scholar
  77. 77.
    CMS Collaboration, Measurement of dijet azimuthal decorrelations in pp collisions at \(\sqrt{s} = 8\) TeV. Technical report, CMS-PAS-SMP-14-015, CERN, 2015Google Scholar
  78. 78.
    ATLAS Collaboration, Measurement of four-jet differential cross sections in \(\sqrt{s}=8\) TeV proton–proton collisions using the ATLAS detector, arXiv:1509.07335
  79. 79.
    Z. Bern et al., Four-jet production at the large hadron collider at next-to-leading order in QCD. Phys. Rev. Lett. 109, 042001 (2012). doi:10.1103/PhysRevLett.109.042001. arXiv:1112.3940 ADSCrossRefGoogle Scholar
  80. 80.
    S. Badger, B. Biedermann, P. Uwer, V. Yundin, NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \(\sqrt{s}=8\) TeV. Phys. Lett. B 718, 965 (2013). doi:10.1016/j.physletb.2012.11.029. arXiv:1209.0098 ADSCrossRefGoogle Scholar
  81. 81.
    S. Alioli et al., Jet pair production in POWHEG. JHEP 04, 081 (2011). doi:10.1007/JHEP04(2011)081. arXiv:1012.3380
  82. 82.
    A. Kardos, P. Nason, C. Oleari, Three-jet production in POWHEG. JHEP 04, 043 (2014). doi:10.1007/JHEP04(2014)043. arXiv:1402.4001
  83. 83.
    M. Wobisch et al., A new quantity for studies of dijet azimuthal decorrelations. JHEP 01, 172 (2013). doi:10.1007/JHEP01(2013)172. arXiv:1211.6773 ADSCrossRefGoogle Scholar
  84. 84.
    D0 Collaboration, Measurement of the combined rapidity and \(p_T\) dependence of dijet azimuthal decorrelations in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV. Phys. Lett. B 721, 212 (2013). doi:10.1016/j.physletb.2013.03.029. arXiv:1212.1842 CrossRefGoogle Scholar
  85. 85.
    ATLAS Collaboration, Measurement of charged-particle event shape variables in \(\sqrt{s}=7\) TeV proton-proton interactions with the ATLAS detector. Phys. Rev. D 88 (2013) 032004. doi:10.1103/PhysRevD.88.032004. arXiv:1207.6915
  86. 86.
    S. Brandt, C. Peyrou, R. Sosnowski, A. Wroblewski, The Principal axis of jets. An Attempt to analyze high-energy collisions as two-body processes. Phys. Lett. 12, 57 (1964). doi:10.1016/0031-9163(64)91176-X ADSCrossRefGoogle Scholar
  87. 87.
    J.D. Bjorken, S.J. Brodsky, Statistical model for electron-positron annihilation into hadrons. Phys. Rev. D 1, 1416 (1970). doi:10.1103/PhysRevD.1.1416 ADSCrossRefGoogle Scholar
  88. 88.
    E. Farhi, A QCD Test for Jets. Phys. Rev. Lett. 39, 1587 (1977). doi:10.1103/PhysRevLett.39.1587 ADSCrossRefGoogle Scholar
  89. 89.
    A. De Rujula, J.R. Ellis, E.G. Floratos, M.K. Gaillard, QCD predictions for hadronic final states in \(e^+e^-\) annihilation. Nucl. Phys. B 138, 387 (1978). doi:10.1016/0550-3213(78)90388-7 ADSCrossRefGoogle Scholar
  90. 90.
    G.F. Sterman, S. Weinberg, Jets from quantum chromodynamics. Phys. Rev. Lett. 39, 1436 (1977). doi:10.1103/PhysRevLett.39.1436 ADSCrossRefGoogle Scholar
  91. 91.
    G. Hanson et al., Evidence for jet structure in hadron production by e+ e- annihilation. Phys. Rev. Lett. 35, 1609 (1975). doi:10.1103/PhysRevLett.35.1609 ADSCrossRefGoogle Scholar
  92. 92.
    H. Georgi, M. Machacek, A simple QCD prediction of jet structure in e+ e- annihilation. Phys. Rev. Lett. 39, 1237 (1977). doi:10.1103/PhysRevLett.39.1237 ADSCrossRefGoogle Scholar
  93. 93.
    H1 Collaboration, Measurement of event shape variables in deep inelastic e p scattering. Phys. Lett. B 406, 256 (1997). doi:10.1016/S0370-2693(97)00754-5. arXiv:hep-ex/9706002
  94. 94.
    H1 Collaboration, Investigation of power corrections to event shape variables measured in deep inelastic scattering. Eur. Phys. J. C 14, 255 (2000). doi:10.1007/s100520000344. arXiv:hep-ex/9912052
  95. 95.
    H1 Collaboration, Measurement of event shape variables in deep-inelastic scattering at HERA. Eur. Phys. J. C 46, 343 (2006). doi:10.1140/epjc/s2006-02493-x. arXiv:hep-ex/0512014
  96. 96.
    ZEUS Collaboration, Measurement of event shapes in deep inelastic scattering at HERA. Eur. Phys. J. C 27, 531 (2003). doi:10.1140/epjc/s2003-01148-x. arXiv:hep-ex/0211040
  97. 97.
    ZEUS Collaboration, Event shapes in deep inelastic scattering at HERA, Nucl. Phys. B767 (2007) 1–28. doi:10.1016/j.nuclphysb.2006.05.016. arXiv:hep-ex/0604032
  98. 98.
    M. Dasgupta, G.P. Salam, Event shapes in \(e^+e^-\) annihilation and deep inelastic scattering. J. Phys. G 30, R143 (2004). doi:10.1088/0954-3899/30/5/R01. arXiv:hep-ph/0312283 ADSCrossRefGoogle Scholar
  99. 99.
    A. Banfi, G.P. Salam, G. Zanderighi, Resummed event shapes at hadron-hadron colliders. JHEP 08, 062 (2004). doi:10.1088/1126-6708/2004/08/062. arXiv:hep-ph/0407287 ADSCrossRefMATHGoogle Scholar
  100. 100.
    A. Banfi, G.P. Salam, G. Zanderighi, Phenomenology of event shapes at hadron colliders. JHEP 06, 038 (2010). doi:10.1007/JHEP06(2010)038. arXiv:1001.4082 ADSCrossRefMATHGoogle Scholar
  101. 101.
    CMS Collaboration, Study of hadronic event-shape variables in multijet final states in pp collisions at \(\sqrt{s}\) = 7 TeV. JHEP 10, 87 (2014). doi:10.1007/JHEP10(2014)087. arXiv:1407.2856
  102. 102.
    R.K. Ellis, D.A. Ross, A.E. Terrano, The perturbative calculation of jet structure in e+ e- annihilation. Nucl. Phys. B 178, 421 (1981). doi:10.1016/0550-3213(81)90165-6 ADSCrossRefGoogle Scholar
  103. 103.
    G.C. Fox, S. Wolfram, Observables for the analysis of event shapes in e+ e- annihilation and other processes. Phys. Rev. Lett. 41, 1581 (1978). doi:10.1103/PhysRevLett.41.1581 ADSCrossRefGoogle Scholar
  104. 104.
    C.L. Basham, L.S. Brown, S.D. Ellis, S.T. Love, Energy correlations in electron—positron annihilation: testing QCD. Phys. Rev. Lett. 41, 1585 (1978). doi:10.1103/PhysRevLett.41.1585 ADSCrossRefGoogle Scholar
  105. 105.
    C.L. Basham, L.S. Brown, S.D. Ellis, S.T. Love, Energy correlations in electron-positron annihilation in quantum chromodynamics: asymptotically free perturbation theory. Phys. Rev. D 19, 2018 (1979). doi:10.1103/PhysRevD.19.2018 ADSCrossRefGoogle Scholar
  106. 106.
    ATLAS Collaboration, Measurement of transverse energy-energy correlations in multi-jet events in \(pp\) collisions at \(\sqrt{s} = 7\) TeV using the ATLAS detector and determination of the strong coupling constant \(\alpha _{\rm {s}}(m_{\rm {Z}})\). Phys. Lett. B 750 (2015) 427. doi:10.1016/j.physletb.2015.09.050. arXiv:1508.01579
  107. 107.
    UA1 Collaboration, Hadronic jet production at the CERN proton-antiproton collider. Phys. Lett. B 132, 214 (1983). doi:10.1016/0370-2693(83)90254-X
  108. 108.
    UA2 Collaboration, Jet measures and hadronic event shapes at the CERN \(\bar{p}p\) collider. Z. Phys. C 36, 175 (1987). doi:10.1007/BF01579132 CrossRefGoogle Scholar
  109. 109.
    CDF Collaboration, Measurement of QCD jet broadening in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. D 44, 601 (1991). doi:10.1103/PhysRevD.44.601
  110. 110.
    D0 Collaboration, I.A. Bertram, Jet results at the D0 experiment, in Proceedings, 10th International Workshop on Deep-Inelastic Scattering (DIS 2002), vol. 33, p. 3141. Krakow, Poland, April 30-May 4, 2002Google Scholar
  111. 111.
    D0 Collaboration, V.D. Elvira, Jet measurements at D0 using a \(k_{T}\) algorithm, in Proceedings, 9th High-Energy Physics International Conference on Quantum chromodynamics (QCD’02), vol. 121, p. 21. Montpellier, France, 2–9 July 2003. arXiv:hep-ex/0209073. doi:10.1016/S0920-5632(03)01805-X
  112. 112.
    CDF Collaboration, Measurement of event shapes in proton-antiproton collisions at center-of-mass energy 1.96 TeV. Phys. Rev. D 83, 112007 (2011). doi:10.1103/PhysRevD.83.112007. arXiv:1103.5143
  113. 113.
    CMS Collaboration, First measurement of hadronic event shapes in \(pp\) collisions at \(\sqrt{(}s)=7\) TeV. Phys. Lett. B 699, 48 (2011). doi:10.1016/j.physletb.2011.03.060. arXiv:1102.0068
  114. 114.
    ATLAS Collaboration, Measurement of event shapes at large momentum transfer with the ATLAS detector in \(pp\) collisions at \(\sqrt{s}=7\) TeV. Eur. Phys. J. C 72 (2012) 2211. doi:10.1140/epjc/s10052-012-2211-y. arXiv:1206.2135
  115. 115.
    CMS Collaboration, Event shapes and azimuthal correlations in \(Z\) + jets events in pp collisions at \(\sqrt{s}=7\) TeV. Phys. Lett. B 722, 238 (2013). doi:10.1016/j.physletb.2013.04.025. arXiv:1301.1646
  116. 116.
    J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, NNLO QCD corrections to jet production at hadron colliders from gluon scattering. JHEP 01 (2014) 110. doi:10.1007/JHEP01(2014)110. arXiv:1310.3993
  117. 117.
    R. Boughezal, C. Focke, X. Liu, F. Petriello, \(W\)-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD. Phys. Rev. Lett. 115, 062002 (2015). doi:10.1103/PhysRevLett.115.062002. arXiv:1504.02131
  118. 118.
    A. Gehrmann-de Ridder et al., Precise QCD predictions for the production of a Z boson in association with a hadronic jet, arXiv:1507.02850
  119. 119.
    R. Boughezal et al., \(Z\)-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, arXiv:1512.01291
  120. 120.
    J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Jet substructure as a new Higgs search channel at the LHC. Phys. Rev. Lett. 100, 242001 (2008). doi:10.1103/PhysRevLett.100.242001. arXiv:0802.2470 ADSCrossRefGoogle Scholar
  121. 121.
    J. Thaler, L.-T. Wang, Strategies to Identify Boosted Tops. JHEP 07, 092 (2008). doi:10.1088/1126-6708/2008/07/092. arXiv:0806.0023
  122. 122.
    D.E. Kaplan, K. Rehermann, M.D. Schwartz, B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks. Phys. Rev. Lett. 101, 142001 (2008). doi:10.1103/PhysRevLett.101.142001. arXiv:0806.0848 ADSCrossRefGoogle Scholar
  123. 123.
    L.G. Almeida et al., Substructure of high-pT Jets at the LHC. Phys. Rev. D 79, 074017 (2009). doi:10.1103/PhysRevD.79.074017. arXiv:0807.0234 ADSMathSciNetCrossRefGoogle Scholar
  124. 124.
    D. Krohn, J. Thaler, L.-T. Wang, Jet trimming. JHEP 02, 084 (2010). doi:10.1007/JHEP02(2010)084. arXiv:0912.1342
  125. 125.
    S.D. Ellis, C.K. Vermilion, J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches. Phys. Rev. D 81, 094023 (2010). doi:10.1103/PhysRevD.81.094023. arXiv:0912.0033 ADSCrossRefGoogle Scholar
  126. 126.
    A. Altheimer et al., Jet substructure at the tevatron and LHC: new results, new tools, new benchmarks. J. Phys. G 39, 063001 (2012). doi:10.1088/0954-3899/39/6/063001. arXiv:1201.0008 ADSCrossRefGoogle Scholar
  127. 127.
    A. Altheimer et al., Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd-27th of July 2012. Eur. Phys. J. C 74, 2792 (2014). doi:10.1140/epjc/s10052-014-2792-8. arXiv:1311.2708 ADSCrossRefGoogle Scholar
  128. 128.
    S.D. Ellis, Z. Kunszt, D.E. Soper, Jets at hadron colliders at order \(\alpha -s^{3}\): a look inside. Phys. Rev. Lett. 69, 3615 (1992). doi:10.1103/PhysRevLett.69.3615. arXiv:hep-ph/9208249 ADSCrossRefGoogle Scholar
  129. 129.
    CDF Collaboration, A Measurement of jet shapes in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. Lett. 70, 713 (1993). doi:10.1103/PhysRevLett.70.713
  130. 130.
    CDF Collaboration, Study of jet shapes in inclusive jet production in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV. Phys. Rev. D 71, 112002 (2005). doi:10.1103/PhysRevD.71.112002. arXiv:hep-ex/0505013
  131. 131.
    D0 Collaboration, Transverse energy distributions within jets in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Lett. B 357, 500 (1995). doi:10.1016/0370-2693(95)00889-S ADSCrossRefGoogle Scholar
  132. 132.
    ZEUS Collaboration, Measurement of jet shapes in photoproduction at HERA. Eur. Phys. J. C C2, 61 (1998). doi:10.1007/s100520050124. arXiv:hep-ex/9710002. DOI not accessible!
  133. 133.
    ZEUS Collaboration, Measurement of jet shapes in high \(Q^{2}\) deep inelastic scattering at HERA. Eur. Phys. J. C C8, 367 (1999). doi:10.1007/s100520050471. arXiv:hep-ex/9804001
  134. 134.
    ZEUS Collaboration, Substructure dependence of jet cross sections at HERA and determination of \(\alpha _s\). Nucl. Phys. B 700, 3 (2004). doi:10.1016/j.nuclphysb.2004.08.049. arXiv:hep-ex/0405065
  135. 135.
    H1 Collaboration, Measurement of internal jet structure in dijet production in deep inelastic scattering at HERA. Nucl. Phys. B 545, 3 (1999). doi:10.1016/S0550-3213(99)00118-2. arXiv:hep-ex/9901010
  136. 136.
    CDF Collaboration, Measurement of \(b\)-jet Shapes in inclusive jet production in \(p \bar{p}\) collisions at \(\sqrt{s}\) = 1.96-TeV. Phys. Rev. D 78, 072005 (2008). doi:10.1103/PhysRevD.78.072005. arXiv:0806.1699
  137. 137.
    CMS Collaboration, Shape, transverse size, and charged hadron multiplicity of jets in pp collisions at 7 TeV. JHEP 06, 160 (2012). doi:10.1007/JHEP06(2012)160. arXiv:1204.3170
  138. 138.
    ATLAS Collaboration, Study of jet shapes in inclusive jet production in \(pp\) collisions at \(\sqrt{s}=7\) TeV using the ATLAS detector. Phys. Rev. D 83 (2011) 052003. doi:10.1103/PhysRevD.83.052003. arXiv:1101.0070
  139. 139.
    A. Banfi, G.P. Salam, G. Zanderighi, Infrared safe definition of jet flavor. Eur. Phys. J. C 47, 113 (2006). doi:10.1140/epjc/s2006-02552-4. arXiv:hep-ph/0601139 ADSCrossRefGoogle Scholar
  140. 140.
    M.H. Seymour, The average number of subjets in a hadron collider jet. Nucl. Phys. B 421, 545 (1994). doi:10.1016/0550-3213(94)90516-9 ADSCrossRefGoogle Scholar
  141. 141.
    M.H. Seymour, The subjet multiplicity in quark and gluon jets. Phys. Lett. B 378, 279 (1996). doi:10.1016/0370-2693(96)00399-1. arXiv:hep-ph/9603281 ADSCrossRefGoogle Scholar
  142. 142.
    J.R. Forshaw, M.H. Seymour, Subjet rates in hadron collider jets. JHEP 09, 009 (1999). doi:10.1088/1126-6708/1999/09/009. arXiv:hep-ph/9908307 ADSCrossRefGoogle Scholar
  143. 143.
    D0 Collaboration, Subjet multiplicity of gluon and quark jets reconstructed with the \(k_T\) algorithm in \(p\bar{p}\) collisions. Phys. Rev. D 65, 052008 (2002). doi:10.1103/PhysRevD.65.052008. arXiv:hep-ex/0108054
  144. 144.
    ZEUS Collaboration, Measurement of subjet multiplicities in neutral current deep inelastic scattering at HERA and determination of \(\alpha _s\). Phys. Lett. B 558, 41 (2003). doi:10.1016/S0370-2693(03)00216-8. arXiv:hep-ex/0212030
  145. 145.
    ZEUS Collaboration, Subjet distributions in deep inelastic scattering at HERA. Eur. Phys. J. C 63, 527 (2009). doi:10.1140/epjc/s10052-009-1090-3. arXiv:0812.2864
  146. 146.
    CMS Collaboration, Measurement of the Subjet Multiplicity in Dijet Events from proton-proton Collisions at \(\sqrt{s} = 7\) TeV. Technical report, CMS-PAS-QCD-10-041, CERN, 2010Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute for Experimental Nuclear PhysicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations