Absolute Cross Sections

Chapter
Part of the Springer Tracts in Modern Physics book series (STMP, volume 268)

Abstract

Absolute cross sections are the most fundamental measurements to be made in collision experiments. They represent the proportionality constant between the luminosity characterising the performance of a particle accelerator and event count rates in an experiment. After introducing some basic terminology, measurements of inclusive jet, dijet, and 3-jet cross sections and their use in determining SM parameters are presented.

References

  1. 1.
    UA2 Collaboration, Observation of very large transverse momentum jets at the CERN \(\bar{p}p\) collider. Phys. Lett. B 118, 203 (1982). doi:10.1016/0370-2693(82)90629-3
  2. 2.
    R. Horgan, M. Jacob, Jet production at collider energy. Nucl. Phys. B 179, 441 (1981). doi:10.1016/0550-3213(81)90013-4 ADSCrossRefGoogle Scholar
  3. 3.
    UA1 Collaboration, Hadronic jet production at the CERN proton-antiproton collider. Phys. Lett. B 132, 214 (1983). doi:10.1016/0370-2693(83)90254-X
  4. 4.
    UA2 Collaboration, Measurement of the \(\sqrt{(}s)\) dependence of jet production at the CERN anti-p p collider. Phys. Lett. B 160, 349 (1985). doi:10.1016/0370-2693(85)91341-3
  5. 5.
    UA1 Collaboration, Measurement of the inclusive jet cross-section at the CERN p anti-p collider. Phys. Lett. B 172, 461 (1986). doi:10.1016/0370-2693(86)90290-X
  6. 6.
    CDF Collaboration, Comparison of jet production in \(\bar{p}p\) collisions at \(\sqrt{s} = 546\) GeV and 1800 GeV. Phys. Rev. Lett. 70, 1376 (1993). doi:10.1103/PhysRevLett.70.1376
  7. 7.
    D0 Collaboration, High-\(p_T\) jets in \(\bar{p}p\) collisions at \(\sqrt{s} = 630\) GeV and 1800 GeV. Phys. Rev. D 64, 032003 (2001). doi:10.1103/PhysRevD.64.032003, arXiv:hep-ex/0012046
  8. 8.
    D0 Collaboration, Inclusive jet production in \(p\bar{p}\) collisions. Phys. Rev. Lett. 86, 1707 (2001). doi:10.1103/PhysRevLett.86.1707, arXiv:hep-ex/0011036
  9. 9.
    CDF Collaboration, Measurement of the inclusive jet cross section in \(\bar{p}p\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. D 64, 032001 (2001). doi:10.1103/PhysRevD.65.039903, 10.1103/PhysRevD.64.032001, arXiv:hep-ph/0102074
  10. 10.
    CDF Collaboration, Measurement of the inclusive jet cross section using the \(k_{\rm {T}}\) algorithm in \(p\overline{p}\) collisions at \(\sqrt{s}\) = 1.96 TeV with the CDF II detector. Phys. Rev. D 75, 092006 (2007). doi:10.1103/PhysRevD.75.119901, 10.1103/PhysRevD.75.092006, arXiv:hep-ex/0701051
  11. 11.
    CDF Collaboration, Measurement of the inclusive jet cross section at the fermilab tevatron \({p\bar{p}}\) collider using a cone-based jet algorithm. Phys. Rev. D 78, 052006 (2008). doi:10.1103/PhysRevD.79.119902, 10.1103/PhysRevD.78.052006, arXiv:0807.2204
  12. 12.
    D0 Collaboration, Measurement of the inclusive jet cross-section in \(p\bar{p}\) collisions at \(\sqrt{s}\) = 1.96 TeV. Phys. Rev. Lett. 101, 062001 (2008). doi:10.1103/PhysRevLett.101.062001, arXiv:0802.2400
  13. 13.
    STAR Collaboration, Longitudinal double-spin asymmetry and cross section for inclusive jet production in polarized proton collisions at \(\sqrt{s} = 200\) GeV. Phys. Rev. Lett. 97, 252001 (2006). doi:10.1103/PhysRevLett. 97.252001, arXiv:hep-ex/0608030
  14. 14.
    A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). doi:10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002
  15. 15.
    fastNLO Collaboration, Theory-data comparisons for jet measurements in hadron-induced processes, arXiv:1109.1310
  16. 16.
    ALICE Collaboration, Measurement of the inclusive differential jet cross section in \(pp\) collisions at \(\sqrt{s} = 2.76\) TeV. Phys. Lett. B 722, 262 (2013). doi:10.1016/j.physletb.2013.04.026, arXiv:1301.3475
  17. 17.
    ATLAS Collaboration, Measurement of inclusive jet and dijet cross sections in proton-proton collisions at 7 TeV centre-of-mass energy with the ATLAS detector. Eur. Phys. J. C 71, 1512 (2011). doi:10.1140/epjc/s10052-010-1512-2, arXiv:1009.5908
  18. 18.
    ATLAS Collaboration, Measurement of inclusive jet and dijet production in \(pp\) collisions at \(\sqrt{s}=7\) TeV using the ATLAS detector. Phys. Rev. D 86, 014022 (2012). doi:10.1103/PhysRevD.86.014022, arXiv:1112.6297
  19. 19.
    ATLAS Collaboration, Measurement of the inclusive jet cross section in \(pp\) collisions at \(\sqrt{s}=2.76\) TeV and comparison to the inclusive jet cross section at \(\sqrt{s}=7\) TeV using the ATLAS detector. Eur. Phys. J. C 73, 2509 (2013). doi:10.1140/epjc/s10052-013-2509-4, arXiv:1304.4739
  20. 20.
    ATLAS Collaboration, Measurement of the inclusive jet cross-section in proton-proton collisions at \(\sqrt{s}=7\) TeV using 4.5 fb\(^{-1}\) of data with the ATLAS detector. JHEP 02, 153 (2015). doi:10.1007/JHEP02(2015)153, arXiv:1410.8857
  21. 21.
    CMS Collaboration, Measurement of the inclusive jet cross Section in pp collisions at \(\sqrt{s}=7\) TeV. Phys. Rev. Lett. 107, 132001 (2011). doi:10.1103/PhysRevLett.107.132001, arXiv:1106.0208
  22. 22.
    CMS Collaboration, Measurement of the inclusive production cross sections for forward jets and for dijet events with one forward and one central jet in pp collisions at \(\sqrt{s}=7\) TeV. JHEP 06, 036 (2012). doi:10.1007/JHEP06(2012)036, arXiv:1202.0704
  23. 23.
    CMS Collaboration, Measurements of differential jet cross sections in proton-proton collisions at \(\sqrt{s}=7\) TeV with the CMS detector. Phys. Rev. D 87, 112002 (2013). doi:10.1103/PhysRevD.87.112002, arXiv:1212.6660
  24. 24.
    CMS Collaboration, Measurement of the ratio of inclusive jet cross sections using the anti-\(k_T\) algorithm with radius parameters \(R = 0.5\) and \(0.7\) in pp collisions at \(\sqrt{s}\) = 7 TeV. Phys. Rev. D 90, 072006 (2014). doi:10.1103/PhysRevD.90.072006, arXiv:1406.0324
  25. 25.
    CMS Collaboration, Measurement of the inclusive jet cross section in pp collisions at \(\sqrt{s} = 2.76\,\)TeV. Eur. Phys. J. C 76, 265 (2016). doi:10.1140/epjc/s10052-016-4083-z, arXiv:1512.06212
  26. 26.
    M. Cacciari, G.P. Salam, G. Soyez, The anti-\(k_t\) jet clustering algorithm. JHEP 04, 063 (2008). doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189
  27. 27.
    M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097
  28. 28.
    CMS Collaboration, Study of the underlying event at forward rapidity in pp collisions at \(\sqrt{s} =\) 0.9, 2.76, and 7 TeV, JHEP 04, 072 (2013). doi:10.1007/JHEP04(2013)072, arXiv:1302.2394
  29. 29.
    CMS Collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at \(\sqrt{s}\) = 7 TeV. Eur. Phys. J. C 75, 288 (2015). doi:10.1140/epjc/s10052-015-3499-1, arXiv:1410.6765
  30. 30.
    Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order. Phys. Rev. Lett. 88, 122003 (2002). doi:10.1103/PhysRevLett.88.122003, arXiv:hep-ph/0110315
  31. 31.
    Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron hadron collisions. Phys. Rev. D 68, 094002 (2003). doi:10.1103/PhysRevD.68.094002, arXiv:hep-ph/0307268
  32. 32.
    D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, New features in version 2 of the fastNLO project, in Proceedings, XX. International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2012) (Bonn, Germany, March 26–30, 2012), p. 217, arXiv:1208.3641. doi:10.3204/DESY-PROC-2012-02/165
  33. 33.
    T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID project. Eur. Phys. J. C 66, 503 (2010). doi:10.1140/epjc/s10052-010-1255-0, arXiv:0911.2985
  34. 34.
    CDF Collaboration, Inclusive jet cross section in \({\bar{p} p}\) collisions at \(\sqrt{s}=1.8\) TeV. Phys. Rev. Lett. 77, 438 (1996). doi:10.1103/PhysRevLett.77.438, arXiv:hep-ex/9601008
  35. 35.
    J. Huston et al., Large transverse momentum jet production and the gluon distribution inside the proton. Phys. Rev. Lett. 77, 444 (1996). doi:10.1103/PhysRevLett.77.444, arXiv:hep-ph/9511386
  36. 36.
    J.R. Andersen et al., Les Houches 2013: physics at TeV colliders: standard model working group report. arXiv:1405.1067
  37. 37.
    S. Dittmaier, A. Huss, C. Speckner, Weak radiative corrections to dijet production at hadron colliders. JHEP 11, 095 (2012). doi:10.1007/JHEP11(2012)095, arXiv:1210.0438
  38. 38.
    ATLAS Collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector. JHEP 05, 059 (2014). doi:10.1007/JHEP05(2014)059, arXiv:1312.3524
  39. 39.
    S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06, 043 (2010). doi:10.1007/JHEP06(2010)043, arXiv:1002.2581
  40. 40.
    S. Alioli et al., Jet pair production in POWHEG. JHEP 04, 081 (2011). doi:10.1007/JHEP04(2011)081, arXiv:1012.3380
  41. 41.
    T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175
  42. 42.
    AFS Collaboration, Dijet production cross-section and fragmentation of jets produced in \(p p\) collisions at \(\sqrt{s} = 63\,{\rm {GeV}}\). Z. Phys. C 30, 27 (1986). doi:10.1007/BF01560675
  43. 43.
    CDF Collaboration, A measurement of the differential dijet mass cross section in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. D 61, 091101 (2000). doi:10.1103/PhysRevD.61.091101, arXiv:hep-ex/9912022
  44. 44.
    CDF Collaboration, Measurement of the dijet mass distribution in \(p\bar{p}\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. D 48, 998 (1993). doi:10.1103/PhysRevD.48.998
  45. 45.
    CDF Collaboration, Two-jet invariant-mass distribution at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. D 41, 1722 (1990). doi:10.1103/PhysRevD.41.1722
  46. 46.
    D0 Collaboration, The dijet mass spectrum and a search for quark compositeness in \(\bar{p}p\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. Lett. 82, 2457 (1999). doi:10.1103/PhysRevLett.82.2457, arXiv:hep-ex/9807014
  47. 47.
    CDF Collaboration, Two-jet differential cross-section in \(\bar{p}p\) collisions at \(\sqrt{s} = 1.8\) TeV. Phys. Rev. Lett. 64, 157 (1990). doi:10.1103/PhysRevLett.64.157
  48. 48.
    CDF Collaboration, Measurement of the two-jet differential cross section in \(p\bar{p}\) collisions at \(\sqrt{s} = 1800\) GeV. Phys. Rev. D 64, 012001 (2001). doi:10.1103/PhysRevD.65.039902, 10.1103/PhysRevD.64.012001, arXiv:hep-ex/0012013
  49. 49.
    W.T. Giele, E.W.N. Glover, D.A. Kosower, The Two-Jet Differential Cross Section at \({\cal {O}}(\alpha _s^3)\) in Hadron Collisions. Phys. Rev. Lett. 73, 2019 (1994). doi:10.1103/PhysRevLett.73.2019, arXiv:hep-ph/9403347
  50. 50.
    W.T. Giele, E.W.N. Glover, D.A. Kosower, Inclusive two jet triply differential cross section. Phys. Rev. D 52, 1486 (1995). doi:10.1103/PhysRevD.52.1486, arXiv:hep-ph/9412338
  51. 51.
    A.D. Martin, W.J. Stirling, R.G. Roberts, Two jet hadroproduction as a measure of the gluon at small x. Phys. Lett. B 318, 184 (1993). doi:10.1016/0370-2693(93)91804-V, arXiv:hep-ph/9309204
  52. 52.
    CMS Collaboration, Measurement of the differential dijet production cross section in proton-proton collisions at \(\sqrt{s}=7\) TeV. Phys. Lett. B 700, 187 (2011). doi:10.1016/j.physletb.2011.05.027, arXiv:1104.1693
  53. 53.
    S.D. Ellis, Z. Kunszt, D.E. Soper, Two-jet production in hadron collisions at order \(\alpha _s^3\) in QCD. Phys. Rev. Lett. 69, 1496 (1992). doi:10.1103/PhysRevLett.69.1496 ADSCrossRefGoogle Scholar
  54. 54.
    D0 Collaboration, Measurement of three-jet differential cross sections \(d\sigma _{\text{3jet}} / dM_{\text{3jet }}\) in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV. Phys. Lett. B 704, 434 (2011). doi:10.1016/j.physletb.2011.09.048, arXiv:1104.1986
  55. 55.
    ATLAS Collaboration, Measurement of three-jet production cross-sections in \(pp\) collisions at 7 TeV centre-of-mass energy using the ATLAS detector. Eur. Phys. J. C 75, 228 (2014). doi:10.1140/epjc/s10052-015-3363-3, arXiv:1411.1855
  56. 56.
    CMS Collaboration, Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 75, 186 (2015). doi:10.1140/epjc/s10052-015-3376-y, arXiv:1412.1633
  57. 57.
    H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). doi:10.1103/PhysRevD.82.074024, arXiv:1007.2241
  58. 58.
    S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). doi:10.1103/PhysRevD.86.054009, arXiv:1202.2281
  59. 59.
    O. Ducu, L. Heurtier, J. Maurer, LHC signatures of a Z’ mediator between dark matter and the SU(3) sector. JHEP 03, 006 (2016). doi:10.1007/JHEP03(2016)006, arXiv:1509.05615
  60. 60.
    L. Lyons, A.J. Martin, D.H. Saxon, On the determination of the \(B\) lifetime by combining the results of different experiments. Phys. Rev. D 41, 982 (1990). doi:10.1103/PhysRevD.41.982 ADSCrossRefGoogle Scholar
  61. 61.
    G. D’Agostini, Bayesian Reasoning in Data Analysis: A Critical Introduction (World Scientific Publishing Co. Pte. Ltd., Singapore, 2003)Google Scholar
  62. 62.
    R.D. Ball et al., Fitting parton distribution data with multiplicative normalization uncertainties. JHEP 05, 075 (2010). doi:10.1007/JHEP05(2010)075, arXiv:0912.2276
  63. 63.
    A. Banfi, G.P. Salam, G. Zanderighi, Phenomenology of event shapes at hadron colliders. JHEP 06, 038 (2010). doi:10.1007/JHEP06(2010)038, arXiv:1001.4082
  64. 64.
    G.P. Salam, J. Rojo, A higher order perturbative parton evolution toolkit (HOPPET). Comput. Phys. Commun. 180, 120 (2009). doi:10.1016/j.cpc.2008.08.010, arXiv:0804.3755
  65. 65.
    M. Glück, E. Reya, A. Vogt, Dynamical parton distributions revisited. Eur. Phys. J. C 5, 461 (1998). doi:10.1007/s100520050289, arXiv:hep-ph/9806404
  66. 66.
    B. Schmidt, M. Steinhauser, CRunDec: a C++ package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun. 183, 1845 (2012). doi:10.1016/j.cpc.2012.03.023, arXiv:1201.6149
  67. 67.
    K.G. Chetyrkin, J.H. Kuhn, M. Steinhauser, RunDec: a mathematica package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun. 133, 43 (2000). doi:10.1016/S0010-4655(00)00155-7, arXiv:hep-ph/0004189
  68. 68.
    K.A. Olive and others (Particle Data Group), Review of particle physics. Chin. Phys. C 38, 090001 (2014). doi:10.1088/1674-1137/38/9/090001
  69. 69.
    CDF Collaboration, Measurement of the strong coupling constant from inclusive jet production at the Tevatron \(\bar{p}p\) collider. Phys. Rev. Lett. 88, 042001 (2002). doi:10.1103/PhysRevLett.88.042001, arXiv:hep-ex/0108034
  70. 70.
    D0 Collaboration, Determination of the strong coupling constant from the inclusive jet cross section in \(p\bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV. Phys. Rev. D 80, 111107 (2009). doi:10.1103/PhysRevD.80.111107, arXiv:0911.2710
  71. 71.
    D0 Collaboration, Measurement of angular correlations of jets at \(\sqrt{s}=1.96\) TeV and determination of the strong coupling at high momentum transfers. Phys. Lett. B 718, 56 (2012). doi:10.1016/j.physletb.2012.10.003, arXiv:1207.4957
  72. 72.
    B. Malaescu, P. Starovoitov, Evaluation of the strong coupling constant \(\alpha _S\) using the ATLAS inclusive jet cross-section data. Eur. Phys. J. C 72, 2041 (2012). doi:10.1140/epjc/s10052-012-2041-y, arXiv:1203.5416
  73. 73.
    CMS Collaboration, Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in \(pp\) collisions at \(\sqrt{s}\) = 7 TeV and first determination of the strong coupling constant in the TeV range. Eur. Phys. J. C 73, 2604 (2013). doi:10.1140/epjc/s10052-013-2604-6, arXiv:1304.7498
  74. 74.
    CMS Collaboration, Determination of the top-quark pole mass and strong coupling constant from the \({\rm {t}}\bar{{\rm {t}}}\) production cross section in pp collisions at \(\sqrt{s}\) = 7 TeV. Phys. Lett. B 728, 496 (2014). doi:10.1016/j.physletb.2013.12.009, arXiv:1307.1907
  75. 75.
    CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011). doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277
  76. 76.
    H1 Collaboration, Jet production in ep collisions at High \(Q^2\) and determination of \(\alpha _s\). Eur. Phys. J. C 65, 363 (2010). doi:10.1140/epjc/s10052-009-1208-7, arXiv:0904.3870
  77. 77.
    H1 Collaboration, Jet production in ep collisions at Low \(Q^2\) and determination of \(\alpha _s\). Eur. Phys. J. C 67, 1 (2010). doi:10.1140/epjc/s10052-010-1282-x, arXiv:0911.5678
  78. 78.
    H1 Collaboration, Measurement of multijet production in \(ep\) collisions at high \(Q^2\) and determination of the strong coupling \(\alpha _s\). Eur. Phys. J. C 75, 65 (2015). doi:10.1140/epjc/s10052-014-3223-6, arXiv:1406.4709
  79. 79.
    ZEUS Collaboration, Inclusive-jet photoproduction at HERA and determination of \(\alpha _s\). Nucl. Phys. B 864, 1 (2012). doi:10.1016/j.nuclphysb.2012.06.006, arXiv:1205.6153
  80. 80.
    NNPDF Collaboration, A determination of parton distributions with faithful uncertainty estimation. Nucl. Phys. B 809, 1 (2009). doi:10.1016/j.nuclphysb.2008.09.037, arXiv:0808.1231
  81. 81.
    S. Alekhin et al., HERAFitter. Eur. Phys. J. C 75, 304 (2015). doi:10.1140/epjc/s10052-015-3480-z, arXiv:1410.4412
  82. 82.
    HERAFitter web site, http://www.herafitter.org
  83. 83.
    H1 and ZEUS Collaboration, Combined measurement and QCD analysis of the inclusive \(e^\pm p\) scattering cross sections at HERA. JHEP 01, 109 (2010). doi:10.1007/JHEP01(2010)109, arXiv:0911.0884
  84. 84.
    M. Botje, QCDNUM: fast QCD evolution and convolution. Comput. Phys. Commun. 182, 490 (2011). doi:10.1016/j.cpc.2010.10.020, arXiv:1005.1481
  85. 85.
    R.S. Thorne, R.G. Roberts, An ordered analysis of heavy flavor production in deep inelastic scattering. Phys. Rev. D 57, 6871 (1998). doi:10.1103/PhysRevD.57.6871, arXiv:hep-ph/9709442
  86. 86.
    R.S. Thorne, Variable-flavor number scheme for next-to-next-to-leading order. Phys. Rev. D 73, 054019 (2006). doi:10.1103/PhysRevD.73.054019, arXiv:hep-ph/0601245
  87. 87.
    H1 and ZEUS Collaboration, Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA. Eur. Phys. J. C 73, 2311 (2013). doi:10.1140/epjc/s10052-013-2311-3, arXiv:1211.1182
  88. 88.
    NuTeV Collaboration, Measurement of the nucleon strange-antistrange asymmetry at next-to-leading order in QCD from NuTeV dimuon data. Phys. Rev. Lett. 99, 192001 (2007). doi:10.1103/PhysRevLett.99.192001
  89. 89.
    L. Demortier, Equivalence of the best-fit and covariance matrix methods for comparing binned data with a model in the presence of correlated systematic uncertainties. CDF Note 8661 (1999)Google Scholar
  90. 90.
    D. Stump et al., Uncertainties of predictions from parton distribution functions. 1. The Lagrange multiplier method. Phys. Rev. D 65, 014012 (2001). doi:10.1103/PhysRevD.65.014012, arXiv:hep-ph/0101051
  91. 91.
    M. Botje, Error estimates on parton density distributions. J. Phys. G 28, 779 (2002). doi:10.1088/0954-3899/28/5/305, arXiv:hep-ph/0110123
  92. 92.
    J. Gao et al., MEKS: a program for computation of inclusive jet cross sections at hadron colliders. Comput. Phys. Commun. 184, 1626 (2013). doi:10.1016/j.cpc.2013.01.022, arXiv:1207.0513
  93. 93.
    R.D. Ball et al., Parton distribution benchmarking with LHC Data. JHEP 04, 125 (2013). doi:10.1007/JHEP04(2013)125, arXiv:1211.5142
  94. 94.
    B.J.A. Watt, P. Motylinski, R.S. Thorne, The effect of LHC jet data on MSTW PDFs, arXiv:1311.5703

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute for Experimental Nuclear PhysicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations