Automatic Temporal Segmentation of Articulated Hand Motion

  • Katharina Stollenwerk
  • Anna Vögele
  • Björn Krüger
  • André Hinkenjann
  • Reinhard Klein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9787)


This paper introduces a novel and efficient segmentation method designed for articulated hand motion. The method is based on a graph representation of temporal structures in human hand-object interaction. Along with the method for temporal segmentation we provide an extensive new database of hand motions. The experiments performed on this dataset show that our method is capable of a fully automatic hand motion segmentation which largely coincides with human user annotations.


  1. 1.
    Jörg, S., Hodgins, J., O’Sullivan, C.: The perception of finger motions. In: Proceedings of the APGV, pp. 129–133 (2010)Google Scholar
  2. 2.
    Jörg, S., Hodgins, J.K., Safonova, A.: Data-driven finger motion synthesis for gesturing characters. ACM Trans. Graph. 31(6), 189:1–189:7 (2012)CrossRefGoogle Scholar
  3. 3.
    Zhao, W., Chai, J., Xu, Y.Q.: Combining marker-based mocap and RGB-D camera for acquiring high-fidelity hand motion data. In: Proceedings of the ACM SCA, pp. 33–42 (2012)Google Scholar
  4. 4.
    Tognetti, A., Carbonaro, N., Zupone, G., Rossi, D.D.: Characterization of a novel data glove based on textile integrated sensors. In: IEEE EMBS, pp. 2510–2513 (2006)Google Scholar
  5. 5.
    Dipietro, L., Sabatini, A.M., Dario, P.: A survey of glove-based systems and their applications. IEEE Trans. SMC-C 38(4), 461–482 (2008)Google Scholar
  6. 6.
    Vögele, A., Krüger, B., Klein, R.: Efficient unsupervised temporal segmentation of human motion. In: Proceedings of the ACM SCA (2014)Google Scholar
  7. 7.
    Zhou, F., De la Torre, F., Hodgins, J.K.: Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Trans. PAMI 35, 582–596 (2013)CrossRefGoogle Scholar
  8. 8.
    Wheatland, N., Wang, Y., Song, H., Neff, M., Zordan, V., Jörg, S.: State of the art in hand and finger modeling and animation. Comput. Graph. Forum 34(2), 735–760 (2015)CrossRefGoogle Scholar
  9. 9.
    Arkenbout, E.A., de Winter, J.C.F., Breedveld, P.: Robust hand motion tracking through data fusion of 5DT data glove and Nimble VR kinect camera measurements. Sensors 15(12), 31644–31671 (2015)CrossRefGoogle Scholar
  10. 10.
    Ju, Z., Liu, H.: Human hand motion analysis with multisensory information. IEEE/ASME Trans. Mechatron. 19(2), 456–466 (2014)CrossRefGoogle Scholar
  11. 11.
    CMU: Carnegie Mellon University Graphics Lab: Motion Capture Database (2013)Google Scholar
  12. 12.
    Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documentation Mocap database HDM05. Technical report CG-2007-2, Universität Bonn (2007)Google Scholar
  13. 13.
    Goldfeder, C., Ciocarlie, M.T., Dang, H., Allen, P.K.: The columbia grasp database. In: IEEE ICRA, pp. 1710–1716 (2009)Google Scholar
  14. 14.
    Feix, T., Romero, J., Ek, C.H., Schmiedmayer, H.B., Kragic, D.: A metric for comparing the anthropomorphic motion capability of artificial hands. IEEE Trans. Robot. 29(1), 82–93 (2013)CrossRefGoogle Scholar
  15. 15.
    Atzori, M., Gijsberts, A., Heynen, S., Hager, A.G.M., Deriaz, O., van der Smagt, P., Castellini, C., Caputo, B., Müller, H.: Building the ninapro database: a resource for the biorobotics community. In: Proceedings of the IEEE/RAS-EMBS BioRob, pp. 1258–1265 (2012)Google Scholar
  16. 16.
    Beaun, P., Coros, S., van de Panne, M., Poulin, P.: Motion-motif graphs. In: Proceedings of the ACM SCA, pp. 117–126 (2008)Google Scholar
  17. 17.
    Zhou, F., la Torre, F.D., Hodgins, J.K.: Aligned cluster analysis for temporal segmentation of human motion. In: Proceedings of the IEEE CAFGR (2008)Google Scholar
  18. 18.
    Min, J., Chai, J.: Motion graphs++: a compact generative model for semantic motion analysis and synthesis. ACM Trans. Graph. 31(6), 153:1–153:12 (2012)CrossRefGoogle Scholar
  19. 19.
    Krüger, B., Vögele, A., Willig, T., Yao, A., Klein, R., Weber, A.: Efficient unsupervised temporal segmentation of motion data. CoRR abs/1510.06595 (2015)Google Scholar
  20. 20.
    Levine, S., Theobalt, C., Koltun, V.: Real-time prosody-driven synthesis of body language. ACM Trans. Graph. 28(5), 172:1–172:10 (2009)CrossRefGoogle Scholar
  21. 21.
    Mousas, C., Anagnostopoulos, C.N., Newbury, P.: Finger motion estimation and synthesis for gesturing characters. In: Proceedings of the SCCG, pp. 97–104 (2015)Google Scholar
  22. 22.
    Ekvall, S., Kragic, D.: Grasp recognition for programming by demonstration. In: Proceedings of the IEEE ICRA, pp. 748–753 (2005)Google Scholar
  23. 23.
    Kang, S.B., Ikeuchi, K.: Determination of motion breakpoints in a task sequence from human hand motion. In: Proceedings of the IEEE ICRA, vol. 1, pp. 551–556 (1994)Google Scholar
  24. 24.
    Zhao, W., Zhang, J., Min, J., Chai, J.: Robust realtime physics-based motion control for human grasping. ACM Trans. Graph. 32(6), 207:1–207:12 (2013)CrossRefGoogle Scholar
  25. 25.
    Feix, T., Pawlik, R., Schmiedmayer, H.B., Romero, J., Kragic, D.: A comprehensive grasp taxonomy. In: Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation (2009)Google Scholar
  26. 26.
    Feix, T., Romero, J., Schmiedmayer, H.B., Dollar, A.M., Kragic, D.: The grasp taxonomy of human grasp types. IEEE Trans. HMS 46(1), 66–77 (2016)Google Scholar
  27. 27.
    Krüger, B., Tautges, J., Weber, A., Zinke, A.: Fast local and global similarity searches in large motion capture databases. In: Proceedings of the ACM SCA, pp. 1–10 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Katharina Stollenwerk
    • 1
  • Anna Vögele
    • 2
  • Björn Krüger
    • 3
  • André Hinkenjann
    • 1
  • Reinhard Klein
    • 2
  1. 1.Institute of Visual ComputingBonn-Rhein-Sieg University of Applied SciencesSankt AugustinGermany
  2. 2.Insitute for Computer Science IIBonn UniversityBonnGermany
  3. 3.Gokhale Method InstituteStanfordUSA

Personalised recommendations