Modeling Combustions: The ab initio Treatment of the O(\(^3\)P) + CH\(_3\)OH Reaction

  • Leonardo Pacifici
  • Francesco Talotta
  • Nadia Balucani
  • Noelia Faginas-Lago
  • Antonio Laganà
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9786)


In this work we tackle the problem of dealing in an ab initio fashion with the description of the
$$\begin{aligned} \mathrm{O(^3P) + CH_3OH \rightarrow OH + CH_2OH } \end{aligned}$$
reaction that is one of the most important elementary processes involved in the methanol oxidation. In particular, we carried out the following computational steps:
  1. 1.

    calculate the electronic structure of the \(\mathrm{O} + \mathrm{CH}_3\mathrm{OH}\) system

  2. 2.

    fit to a pseudo triatomic LEPS (London Eyring Polanyi Sato) the collinear reaction channel leading to the production of OH

  3. 3.

    calculate the dynamical properties of the process using quantum techniques


For the purpose of ab initio computing the electronic structure of the O(\(^3\)P) + CH\(_3\)OH system we used various computational programs based on DFT techniques (to characterize the stationary points and work out harmonic vibrational frequencies) and CCSD(T) level of theory (to refine the energy of the stationary points, calculate the exoergicity of the considered channel and estimate the height of the barrier to reaction). For the purpose of computing quantum reactive scattering state specific probabilities on the proposed LEPS potential energy surface, the Multi Configuration Time Dependent Hartree method was used.


Combustion Hydroxyl Hydroperoxyl 



LP thanks “Fondazione Cassa di Risparmio di Perugia (Codice Progetto: 2014.0253.021 Ricerca Scientifica e Tecnologica” for financial support. Thanks are also due to INSTM, IGI and the COMPCHEM virtual organization for the allocation of computing time. The Supercomputing Center for Education & Research (OSCER) at the University of Oklahoma (OU) is acknowledged for providing computing resources and services.


  1. 1.
    Alves, M.M., Carvalho, E.F.V., Machado, F.B.C., Roberto-Neto, O.: Int. J. Quantum Chem. 110, 2037 (2010)Google Scholar
  2. 2.
    Lu, C.-W., Chou, S.-L., Lee, Y.-P., Xu, S., Xu, Z.F., Lin, M.C.: J. Chem. Phys. 122, 244314 (2005)CrossRefGoogle Scholar
  3. 3.
    Carr, S.A., Blitz, M.A., Seakins, P.W.: Chem. Phys. Lett. 511, 207 (2011)CrossRefGoogle Scholar
  4. 4.
    Mani Sarathy, S., Oßwald, P., Hansen, N., Kohse-Höinghaus, K.: Prog. Energy Combust. Sci. 44, 40 (2014)CrossRefGoogle Scholar
  5. 5.
    Aronowitz, D., Naegeli, D.W., Glassman, I.: J. Phys. Chem. 81, 2555–2559 (1977)CrossRefGoogle Scholar
  6. 6.
    Laganà, A.: Towards a grid based universal molecular simulator. In: Laganà, A., Lendvay, G. (eds.) Theory of Chemical Reaction Dynamics. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 145, pp. 363–380. Springer Netherlands (2005). ISBN 978-1-4020-2055-1Google Scholar
  7. 7.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian09 Revision D.01 Gaussian Inc., Wallingford CT 2009Google Scholar
  8. 8.
    Zhao, Y., Lynch, B.J., Truhlar, D.G.: J. Phys. Chem. A 108, 2715 (2004)CrossRefGoogle Scholar
  9. 9.
    Lee, T.J., Taylor, P.R.: Int. J. Quantum Chem. Quant. Chem. Symp. S23, 199 (1989)Google Scholar
  10. 10.
    Sato, S.: J. Chem. Phys. 23, 592 (1955)CrossRefGoogle Scholar
  11. 11.
    Sato, S.: J. Chem. Phys. 23, 2465 (1955)CrossRefGoogle Scholar
  12. 12.
    Huber, K.P., Herzberg, G.: Molecular spectra and molecular structure IV. In: Constants of Diatomic Molecules, vol. 4. Springer Science+Business media, LLC (1979)Google Scholar
  13. 13.
    Beck, M.H., Jäckle, A., Worth, G.A., Meyer, H.D.: Phys. Rep. 324, 1 (2000)CrossRefGoogle Scholar
  14. 14.
    Meyer, H.D., Gatti, F., Worth, G.: Multidimensional Quantum Dynamics, MCTDH Theory and applications. Wiley-VCH, Weinheim (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Leonardo Pacifici
    • 1
  • Francesco Talotta
    • 2
  • Nadia Balucani
    • 1
  • Noelia Faginas-Lago
    • 1
  • Antonio Laganà
    • 1
  1. 1.Department of Chemistry, Biology and BiotechnologiesUniversity of PerugiaPerugiaItaly
  2. 2.Laboratoire de Chimie et Physique Quantiques Université Paul Sabatier - Bat.ToulouseFrance

Personalised recommendations