A Theoretical and Computational Approach to a Semi-classical Model for Electron Spectroscopy Calculations in Collisional Autoionization Processes

  • Stefano Falcinelli
  • Marzio Rosi
  • Fernando Pirani
  • Noelia Faginas Lago
  • Andrea Nicoziani
  • Franco Vecchiocattivi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9786)

Abstract

The analysis of energy spectra of emitted electrons is of great relevance to understand the main characteristics of the potential energy surfaces and of the stereodynamics of the collisional autoionization processes. In this work we analyze the electron kinetic energy spectra obtained in our laboratory in high resolution crossed beam experiments. For such an analysis, a novel semi-classical method is proposed, that assumes ionization events as mostly occurring in the vicinities of the collision turning points. The potential energy driving the system in the relevant configurations of the entrance and exit channels, used in the spectrum simulation, has been formulated by the use of a semi-empirical method. The analysis puts clearly in evidence how different approaches of the metastable atom to the target molecule lead to ions in different electronic states.

Keywords

Semi-classical model Collisional autoionization Penning ionization electron spectroscopy Metastable atoms Molecular beam technique 

Notes

Acknowledgments

Financial contributions from the MIUR (Ministero dellIstruzione, dellUniversità e della Ricerca) through PRIN 2009 (Grant 2009W2W4YF_002) project is gratefully acknowledged. The authors thank Fondazione Cassa di Risparmio di Perugia for a partial support (Project code: 2014.0255.021).

References

  1. 1.
    Penning, F.M.: Naturwissenschaflen 15, 818 (1927)CrossRefGoogle Scholar
  2. 2.
    Hotop, H., Niehaus, A.A.: Z. Phys. 228, 68 (1969)CrossRefGoogle Scholar
  3. 3.
    Benz, A., Morgner, H.: Mol. Phys. 57, 319–336 (1986)CrossRefGoogle Scholar
  4. 4.
    Siska, P.E.: Rev. Mod. Phys. 65, 337 (1993)CrossRefGoogle Scholar
  5. 5.
    Brunetti, B., Vecchiocattivi, F.: Cluster Ions, pp. 359–445. Wiley & Sons Ltd., New York (1993). Ng, C.Y., Baer, T., Powis, I. (eds.)Google Scholar
  6. 6.
    Biondini, F., Brunetti, B.G., Candori, P., et al.: J. Chem. Phys. 122, 164307 (2005)CrossRefGoogle Scholar
  7. 7.
    Biondini, F., Brunetti, B.G., Candori, P., et al.: J. Chem. Phys. 122, 164308 (2005)CrossRefGoogle Scholar
  8. 8.
    Leonori, F., Balucani, N., Nevrly, V., Bergeat, A., et al.: J. Phys. Chem. Lett. 5, 4213–4218 (2014)CrossRefGoogle Scholar
  9. 9.
    Vanuzzo, G., Balucani, N., Leonori, F., Stranges, D., et al.: J. Phys. Chem. Lett. 7, 1010–1015 (2016)CrossRefGoogle Scholar
  10. 10.
    Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Leonori, F., Skouteris, D.: Theoretical study of reactions relevant for atmospheric models of titan: interaction of excited nitrogen atoms with small hydrocarbons. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 331–344. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Alagia, M., Balucani, N., Candori, P., Falcinelli, S., Richter, R., Rosi, M., Pirani, F., Stranges, S., Vecchiocattivi, F.: Rendiconti lincei scienze fisiche e naturali 24, 53–65 (2013)CrossRefGoogle Scholar
  12. 12.
    Falcinelli, S., Pirani, F., Vecchiocattivi, F.: Atmosphere 6, 299–317 (2015)CrossRefGoogle Scholar
  13. 13.
    Falcinelli, S.: Penning ionization of simple molecules and their possible role in planetary atmospheres. In: Batzias, F. et al. (eds.): Recent Advances in Energy, Environment and Financial Planning – Mathematics and Computers in Science and Engineering Series 35, pp. 84–92 (2014) © WSEAS press 2014. ISSN: 2227-4588; ISBN 978-960-474-400-8Google Scholar
  14. 14.
    Alagia, M., Bodo, E., Decleva, P., et al.: Physi. Chem. Chem. Phys. 15, 1310–1318 (2013)CrossRefGoogle Scholar
  15. 15.
    Falcinelli, S., Rosi, M., Candori, P., Vecchiocattivi, F., Farrar, J.M., Pirani, F., Balucani, N., Alagia, M., Richter, R., Stranges, S.: Plan. Space Sci. 99, 149–157 (2014)CrossRefGoogle Scholar
  16. 16.
    Falcinelli, S., et al.: The escape probability of some ions from mars and titan ionospheres. In: Murgante, B., Misra, S., Rocha, A.M.A., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2014, Part I. LNCS, vol. 8579, pp. 554–570. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Pei, L., Carrascosa, E., Yang, N., Falcinelli, S., Farrar, J.M.: J. Phys. Chem. Lett. 6, 1684–1689 (2015)CrossRefGoogle Scholar
  18. 18.
    Schio, L., Li, C., Monti, S., Salén, P., Yatsyna, V.: Feifel, et al. Phys. Chem. Chem. Phys. 17, 9040–9048 (2015)CrossRefGoogle Scholar
  19. 19.
    Falcinelli, S., Rosi, M., et al.: Angular distributions of fragment ions produced by coulomb explosion of simple molecular dications of astrochemical interest. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9156, pp. 291–307. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  20. 20.
    Rosi, M., Falcinelli, S., Balucani, N., Casavecchia, P., Skouteris, D.: A theoretical study of formation routes and dimerization of methanimine and implications for the aerosols formation in the upper atmosphere of titan. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 47–56. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Skouteris, D., Balucani, N., Faginas-Lago, N., et al.: Astron. Astrophys. 584, A76 (2015)Google Scholar
  22. 22.
    Kraft, T., Bregel, T., Ganz, J., Harth, K., Ruf, M.-W., Hotop, H.: Z. Phys. D 10, 473–481 (1988)CrossRefGoogle Scholar
  23. 23.
    Ben Arfa, M., Lescop, B., Cherid, M., et al.: Chem. Phys. Lett. 308, 71–77 (1999)CrossRefGoogle Scholar
  24. 24.
    Brunetti, B.G., Candori, P., Falcinelli, S., Kasai, T., Ohoyama, H., Vecchiocattivi, F.: Phys. Chem. Chem. Phys. 3, 807–810 (2001)CrossRefGoogle Scholar
  25. 25.
    Brunetti, B.G., Candori, P., Falcinelli, S., Lescop, B., Liuti, G., Pirani, F., Vecchiocattivi, F.: Eur. Phys. J. D 38, 21–27 (2006)CrossRefGoogle Scholar
  26. 26.
    Hotop, H.: In atomic, molecular, and optical physics: atoms and molecules. In: Dunning, F.B., Hulet, R.G. (eds.) Academic Press, Inc.: San Diego CA, USA (1996); vol. 29B Experimental Methods in the Physical Sciences, 191–216 (1996) ISBN 0-12-475976-9Google Scholar
  27. 27.
    Falcinelli, S., Rosi, M., Candori, P., Vecchiocattivi, F., Bartocci, A., Lombardi, A., Lago, N.F., Pirani, F.: Modeling the intermolecular interactions and characterization of the dynamics of collisional autoionization processes. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 69–83. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  28. 28.
    Brunetti, B.G., Falcinelli, S., Giaquinto, E., Sassara, A., Prieto-Manzanares, M., Vecchiocattivi, F.: Phys. Rev. A 52, 855–858 (1995)CrossRefGoogle Scholar
  29. 29.
    Brunetti, B.G., Candori, P., De Andres, J., Falcinelli, S., Stramaccia, M., Vecchiocattivi, F.: Chem. Phys. Lett. 290, 17–23 (1998)CrossRefGoogle Scholar
  30. 30.
    Brunetti, B., Falcinelli, S., Sassara, A., De Andres, J., Vecchiocattivi, F.: Chem. Phys. 209, 205–216 (1996)CrossRefGoogle Scholar
  31. 31.
    Aguilar Navarro, A., Brunetti, B., Falcinelli, S., Gonzalez, M., Vecchiocattivi, F.: J. Phys. 96, 433–439 (1992)Google Scholar
  32. 32.
    Brunetti, B., Cambi, R., Falcinelli, S., Farrar, J.M., Vecchiocattivi, F.: J. Phys. Chem. 97, 11877–11882 (1993)CrossRefGoogle Scholar
  33. 33.
    Brunetti, B., Falcinelli, S., Paul, S., Vecchiocattivi, F., Volpi, G.G.: J. Chem. Soc., Faraday Trans. 89, 1505–1509 (1993)CrossRefGoogle Scholar
  34. 34.
    Brunetti, B., Candori, P., Ferramosche, R., et al.: Chem. Phys. Lett. 294, 584–592 (1998)CrossRefGoogle Scholar
  35. 35.
    Brunetti, B., Candori, P., Falcinelli, S., et al.: J. Phys. Chem. 104, 5942–5945 (2000)CrossRefGoogle Scholar
  36. 36.
    Brunetti, B., Candori, P., Cappelletti, D., et al.: Chem. Phys. Lett. 539–540, 19–23 (2012)CrossRefGoogle Scholar
  37. 37.
    Balucani, N., Bartocci, A., Brunetti, B., Candori, P., et al.: Chem. Phys. Lett. 546, 34–39 (2012)CrossRefGoogle Scholar
  38. 38.
    Falcinelli, S., Candori, P., Bettoni, M., Pirani, F., Vecchiocattivi, F.: J. Phys. Chem. A 118, 6501–6506 (2014)CrossRefGoogle Scholar
  39. 39.
    Falcinelli, S., Bartocci, A., Candori, P., Pirani, F., Vecchiocattivi, F.: Chem. Phys. Lett. 614, 171–175 (2014)CrossRefGoogle Scholar
  40. 40.
    Falcinelli, S., Bartocci, A., Cavalli, S., Pirani, F., Vecchiocattivi, F.: J. Chem. Phys. 143, 164306 (2015)CrossRefGoogle Scholar
  41. 41.
    Falcinelli, S., Bartocci, A., Cavalli, S., Pirani, F., Vecchiocattivi, F.: Chem. Eur. J. 22, 764–771 (2016)CrossRefGoogle Scholar
  42. 42.
    Kimura, K., Katsumata, S., Achiba, Y., Yamazaky, T., Iwata, S.: Handbook of HeI photoelectron spectra of fundamental organic molecules. Japan Scientific Societies Press, Tokyo (1981)Google Scholar
  43. 43.
    West, W.P., Cook, T.B., Dunning, F.B., Rundel, R.D., Stebbings, R.F.: J. Chem. Phys. 6, 1237–1242 (1975)CrossRefGoogle Scholar
  44. 44.
    Ishida, T.: J. Chem. Phys. 105, 1392 (1996)CrossRefGoogle Scholar
  45. 45.
    Cermák, V., Yencha, A.J.: J. Electron Spectr. Rel. Phenom. 11, 67 (1977)CrossRefGoogle Scholar
  46. 46.
    Sanders, R.H., Muschlitz, E.E.: Int. J. Mass Spectrom. Ion Phys. 23, 99 (1977)CrossRefGoogle Scholar
  47. 47.
    Reutt, J.E., Wang, L.S., Lee, Y.T., Shirley, D.A.: J. Chem. Phys. 85, 6928 (1986)CrossRefGoogle Scholar
  48. 48.
    Hochlaf, M., Weitzel, K.-M., Ng, C.Y.: J. Chem. Phys. 120, 6944 (2004)CrossRefGoogle Scholar
  49. 49.
    Baltzer, P., Karlsson, L., Lundqvist, M., Wannberg, B., Holland, D.M.P., Mac-Donald, M.A.: J. Chem. Phys. 195, 403 (1995)Google Scholar
  50. 50.
    Candori, P., Falcinelli, S., Pirani, F., Tarantelli, F., Vecchiocattivi, F.: Chem. Phys. Lett. 436, 322–326 (2007)CrossRefGoogle Scholar
  51. 51.
    Falcinelli, S., Rosi, M., Stranges, D., Pirani, F., Vecchiocattivi, F.: J. Phys. Chem A., in press (2016) doi:10.1021/acs.jpca.6b00795
  52. 52.
    Brunetti, B.G., Candori, P., Falcinelli, S., Pirani, F., Vecchiocattivi, F.: J. Chem. Phys. 139, 164305 (2013)Google Scholar
  53. 53.
    Cappelletti, D., Bartocci, A., Grandinetti, F., et al.: Chem. Eur. J. 21, 6234–6240 (2015)CrossRefGoogle Scholar
  54. 54.
    Bartocci, A., Belpassi, L., Cappelletti, D., et al.: J. Chem Phys. 142, 184304 (2015)Google Scholar
  55. 55.
    Cappelletti, D., Candori, P., Falcinelli, S., Albertì, M., Pirani, F.: Chem. Phys. Lett. 545, 14–20 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stefano Falcinelli
    • 1
  • Marzio Rosi
    • 1
  • Fernando Pirani
    • 2
  • Noelia Faginas Lago
    • 2
  • Andrea Nicoziani
    • 2
  • Franco Vecchiocattivi
    • 1
  1. 1.Department of Civil and Environmental EngineeringUniversity of PerugiaPerugiaItaly
  2. 2.Department of Chemistry, Biology and BiotechnologiesUniversity of PerugiaPerugiaItaly

Personalised recommendations