Using ATL Transformation Services in the MDEForge Collaborative Modeling Platform

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9765)


In the last years, the increasing complexity of Model-Driven Engineering (MDE) tools and techniques has led to higher demands in terms of computation, interoperability, and configuration management. Harnessing the software-as-a-service (SaaS) paradigm and shifting applications from local, mono-core implementations to cloud-based architectures is key to enhance scalability and flexibility. To this end, we propose MDEForge: an extensible, collaborative modeling platform that provides remote model management facilities and prevents the user from focussing on time-consuming, and less creative procedures. This demo paper illustrates the extensibility of MDEForge by integrating ATL services for the remote execution, automated testing, and static analysis of ATL transformations. The usefulness of their employment under the SaaS paradigm is demonstrated with a case-study showing a wide range of new application possibilities.


Model Transformation Cloud Infrastructure Analysis Service Core Service Modeling Artifact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work supported by the Spanish MINECO (TIN2014-52129-R), the Madrid Region (S2013/ICE-3006), and the EU commission (#611125)


  1. 1.
    Acretoaie, V., Störrle, H.: Hypersonic-model analysis as a service. In: PSRC@ MoDELs, pp. 1–5 (2014)Google Scholar
  2. 2.
    Aranega, V., Mottu, J.M., Etien, A., Degueule, T., Baudry, B., Dekeyser, J.L.: Towards an automation of the mutation analysis dedicated to model transformation. Softw. Test. Verification Reliab. 25(5–7), 653–683 (2015)CrossRefGoogle Scholar
  3. 3.
    Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Automated clustering of metamodel repositories. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 342–358. Springer, Heidelberg (2016). doi: 10.1007/978-3-319-39696-5_21 CrossRefGoogle Scholar
  4. 4.
    Basciani, F., Di Rocco, J., Di Ruscio, D., Di Salle, A., Iovino, L., Pierantonio, A.: MDEForge: an extensible web-based modeling platform. In: CloudMDE@MoDELS, pp. 66–75 (2014)Google Scholar
  5. 5.
    Basciani, F., Di Ruscio, D., Iovino, L., Pierantonio, A.: Automated chaining of model transformations with incompatible metamodels. In: MODELS, pp. 602–618 (2014)Google Scholar
  6. 6.
    Brunelière, H., Cabot, J., Jouault, F.: Combining model-driven engineering and cloud computing. In: MDA4ServiceCloud@ECMFA, Paris, France, June 2010Google Scholar
  7. 7.
    Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Mining metrics for understanding metamodel characteristics. In: MiSE@ICSE (2014)Google Scholar
  8. 8.
    Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Mining correlations of ATL model transformation and metamodel metrics. In: MiSE@ICSE (2015)Google Scholar
  9. 9.
    Manzanares, C.C., Cuadrado, J.S., de Lara, J.: Building MDE cloud services with distil. In: CloudMDE@MoDELS (2015)Google Scholar
  10. 10.
    Sanchez Cuadrado, J., Guerra, E., De Lara, J.: Uncovering errors in ATL model transformations using static analysis and constraint solving. In: ISSRE, pp. 34–44. IEEE (2014)Google Scholar
  11. 11.
    van Amstel, M.F., van den Brand, M.G.J.: Model transformation analysis: staying ahead of the maintenance nightmare. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 108–122. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of L’AquilaL’AquilaItaly
  2. 2.Universidad Autónoma de MadridMadridSpain
  3. 3.Mälardalen UniversityVästeråsSweden

Personalised recommendations