Advertisement

EMG: A Domain-Specific Transformation Language for Synthetic Model Generation

  • Saheed PopoolaEmail author
  • Dimitrios S. Kolovos
  • Horacio Hoyos Rodriguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9765)

Abstract

Appropriate test models that can satisfy complex constraints are required for testing model management programs in order to build confidence in their correctness. Models have inherently complex structures and are often required to satisfy non-trivial constraints which makes them time consuming, labour intensive and error prone to construct manually. Automated capabilities are therefore required, however, existing fully-automated model generation tools cannot generate models that satisfy arbitrarily complex constraints. In this paper, we propose a semi-automated approach towards the generation of such models. A new framework named Epsilon Model Generator (EMG) that implements this approach is presented. The framework supports the development of model generators that can produce random and reproducible test models that satisfy complex constraints.

References

  1. 1.
    Ali, S., Iqbal, M., Arcuri, A., Briand, L.: A search-based OCL constraint solver for model-based test data generation. In: 11th International Conference on Quality Software (QSIC), pp. 41–50 (2011)Google Scholar
  2. 2.
    Anastasakis, K., Bordbar, B., Kuster, J.M.: Analysis of model transformations via Alloy. In: 4th Modevva Workshop (2007)Google Scholar
  3. 3.
    Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.: Barriers to systematic model transformation testing. Commun. ACM 53(6), 139–143 (2010)CrossRefGoogle Scholar
  4. 4.
    Brottier, E., Fleurey, F., Steel, J., Baudry, B., le Traon, Y.: Metamodel-based test generation for model transformations: an algorithm and a tool. In: 17th International Symposium on Software Reliability Engineering, ISSRE 2006, pp. 85–94 (2006)Google Scholar
  5. 5.
    Dimitris, K., Louis, R., Antonio, G.D., Richard, P.: The Epsilon Book. http://www.eclipse.org/epsilon/doc/book
  6. 6.
    Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the random generation of combinatorial structures. Comb. Probab. Comput. 13(4–5), 577–625 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Eclipse Graphical Modeling Framework, official website. http://www.eclipse.org/gmf-tooling
  8. 8.
    Ehrig, K., Kuster, J.M., Taentzer, G.: Generating instance models from meta models. Softw. Syst. Model. 8(4), 479–500 (2008)CrossRefGoogle Scholar
  9. 9.
    Ferdjoukh, A., Baert, A.E., Chateau, A., Coletta, R., Nebut, C.: A CSP approach for metamodel instantiation. In: 2013 IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1044–1051 (2013)Google Scholar
  10. 10.
    Ferdjoukh, A., Baert, A.E., Bourreau, E., Chateau, A., Coletta, R., Nebut, C.: Instantiation of meta-models constrained with OCL - a CSP approach. In: 2015 3rd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), pp. 213–222, February 2015Google Scholar
  11. 11.
    Fiorentini, C., Momigliano, A., Ornaghi, M., Poernomo, I.: A constructive approach to testing model transformations. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 77–92. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Gonzalez, C., Buttner, F., Clariso, R., Cabot, J.: EMFtoCSP: a tool for the lightweight verification of EMF models. In: Software Engineering: Rigorous and Agile Approaches (FormSERA), pp. 44–50 (2012)Google Scholar
  13. 13.
    James, W., Simon, P.: Generating models using metaheuristic search. In: Proceedings of the Fourth York Doctoral Symposium on Computing, York, pp. 53–60 (2014)Google Scholar
  14. 14.
    Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object language (EOL). In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On the evolution of OCL for capturing structural constraints in modelling languages. In: Abrial, J.-R., Glässer, U. (eds.) Rigorous Methods for Software Construction and Analysis. LNCS, vol. 5115, pp. 204–218. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C., Botterweck, G.: Taming EMF and GMF using model transformation. In: Rouquette, N., Haugen, Ø., Petriu, D.C. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 211–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Martin, G., Jorn, B., Mark, R.: Validating UML and OCL models in USE by automatic snapshot generation. Software 4(4), 386–398 (2005)Google Scholar
  18. 18.
    Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform random generation of huge metamodel instances. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 130–145. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N., Polack, F.A.C.: The design of a conceptual framework and technical infrastructure for model management language engineering. In: Proceedings of the 14th IEEE International Conference on Engineering of Complex Computer Systems, ICECCS 2009, pp. 162–171. IEEE Computer Society (2009)Google Scholar
  20. 20.
    Scheidgen, M.: Generation of large random models for benchmarking. In: Proceedings of the 3rd Workshop on Scalable Model Driven Engineering, L’Aquila, Italy, pp. 1–10 (2015)Google Scholar
  21. 21.
    Sen, S., Baudry, B., Mottu, J.-M.: Automatic model generation strategies for model transformation testing. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 148–164. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Wu, H., Monahan, R., Power, J.: Exploiting attributed type graphs to generate metamodel instances using an SMT solver. In: 2013 International Symposium on Theoretical Aspects of Software Engineering (TASE), pp. 175–182 (2013)Google Scholar
  23. 23.
    Xiao, H., Tian, Z., Zhiyi, M., Weizhong, S.: Randomized model generation for performance testing of model transformations. In: 38th Annual Computer Software and Applications Conference (COMPSAC), pp. 11–20 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Saheed Popoola
    • 1
    Email author
  • Dimitrios S. Kolovos
    • 1
  • Horacio Hoyos Rodriguez
    • 1
  1. 1.University of YorkYorkUK

Personalised recommendations