Stress-Testing Centralised Model Stores

  • Antonio Garcia-DominguezEmail author
  • Konstantinos Barmpis
  • Dimitrios S. Kolovos
  • Ran Wei
  • Richard F. Paige
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9764)


One of the current challenges in model-driven engineering is enabling effective collaborative modelling. Two common approaches are either storing the models in a central repository, or keeping them under a traditional file-based version control system and build a centralized index for model-wide queries. Either way, special attention must be paid to the nature of these repositories and indexes as networked services: they should remain responsive even with an increasing number of concurrent clients. This paper presents an empirical study on the impact of certain key decisions on the scalability of concurrent model queries, using an Eclipse Connected Data Objects model repository and a Hawk model index. The study evaluates the impact of the network protocol, the API design and the internal caching mechanisms and analyzes the reasons for their varying performance.


Model Index Graph Database Eclipse Modeling Framework Query Response Time Client Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was part supported by the EPSRC, through the Large-Scale Complex IT Systems project (EP/F001096/1) and by the EU, through the MONDO FP7 STREP project (#611125).


  1. 1.
    Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.A.: An empirical study of the state of the practice and acceptance of model-driven engineering in four industrial cases. Empirical Softw. Eng. 18(1), 89–116 (2012)CrossRefGoogle Scholar
  2. 2.
    Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Scalability: the holy grail of model driven engineering. In: Proceedings of the Workshop on Challenges in MDE, Collocated with MoDELS 2008, Toulouse, France (2008)Google Scholar
  3. 3.
    Barmpis, K., Kolovos, D.S.: Evaluation of contemporary graph databases for efficient persistence of large-scale models. J. Object Technol., 13–3: 3: 1–26, July 2014. doi: 10.5381/jot.2014.13.3.a3
  4. 4.
    Paternostro, M., Steinberg, D., Budinsky, F., Merks, E.: EMF: Eclipse Modeling Framework, 2nd edn. Addison-Wesley Professional, Reading (2008)Google Scholar
  5. 5.
    Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzegger, W., Schwinger, W.: Towards a semantic infrastructure supporting model-based tool integration. In: Proceedings of the 2006 International Workshop on Global Integrated Model Management, GaMMa 2006, pp. 43–46. ACM, New York (2006)Google Scholar
  6. 6.
    Gómez, A., Tisi, M., Sunyé, G., Cabot, J.: Map-based transparent persistence for very large models. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 19–34. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Pagán, J.E., Cuadrado, J.S., Molina, J.G.: A repository for scalable model management. Softw. Syst. Model., 1–21 (2013). doi: 10.1007/s10270-013-0326-8
  8. 8.
    Koegel, M., Helming, J.: EMFStore: a model repository for EMF models. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, vol. 2, pp. 307–308. ACM (2010)Google Scholar
  9. 9.
    Barmpis, K., Shah, S., Kolovos, D.S.: Towards incremental updates in large-scale model indexes. In: Taentzer, G., Bordeleau, F. (eds.) ECMFA 2015. LNCS, vol. 9153, pp. 137–153. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  10. 10.
    Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon Object Language (EOL). In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    GraBaTs. 5th Int. Workshop on Graph-Based Tools (2009). Accessed 29 Feb 2016
  12. 12.
    Sottet, J.-S., Jouault, F.: Program comprehension. In: Proceedings of the 5th International Workshop on Graph-Based Tools (2009). Accessed 29 Feb 2016
  13. 13.
    Barmpis, K., Kolovos, D.S.: Towards scalable querying of large-scale models. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569, pp. 35–50. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Barmpis, K., Kolovos, D.S.: Towards scalable querying of large-scale models. In: Cabot, J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569, pp. 35–50. Springer, Heidelberg (2014)Google Scholar
  15. 15.
    Chambers, J.M., Cleveland, W.S., Tukey, P.A., Kleiner, B.: Graphical Methods for Data Analysis, 1st edn. Duxbury Press, Boston (1983). ISBN 978-0-534-98052-8zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Antonio Garcia-Dominguez
    • 1
    Email author
  • Konstantinos Barmpis
    • 1
  • Dimitrios S. Kolovos
    • 1
  • Ran Wei
    • 1
  • Richard F. Paige
    • 1
  1. 1.Department of Computer ScienceUniversity of YorkYorkUK

Personalised recommendations