Advertisement

mFast-SeqS as a Monitoring and Pre-screening Tool for Tumor-Specific Aneuploidy in Plasma DNA

  • Jelena Belic
  • Marina Koch
  • Peter Ulz
  • Martina Auer
  • Teresa Gerhalter
  • Sumitra Mohan
  • Katja Fischereder
  • Edgar Petru
  • Thomas Bauernhofer
  • Jochen B. Geigl
  • Michael R. Speicher
  • Ellen Heitzer
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 924)

Abstract

Recent progress in the analysis of cell-free DNA fragments (cell-free circulating tumor DNA, ctDNA) now allows monitoring of tumor genomes by non-invasive means. However, previous studies with plasma DNA from patients with cancer demonstrated highly variable allele frequencies of ctDNA. Comprehensive genome-wide analysis of tumor genomes is greatly facilitated when plasma DNA has increased amounts of ctDNA. In order to develop a fast and cost-effective pre-screening method for the identification of plasma samples suitable for further extensive qualitative analysis, we adapted the recently described FAST-SeqS method. We show that our modified FAST-SeqS method (mFAST-SeqS) can be used as a pre-screening tool for an estimation of the ctDNA percentage. Moreover, since the genome-wide mFAST-SeqS z-scores correlate with the actual tumor content in plasma samples, changes in ctDNA levels associated with response to treatment can be easily monitored without prior knowledge of the genetic composition of tumor samples.

Keywords

Liquid biopsy mFAST-SeqS Circulating tumor DNA (ctDNA) Cancer Plasma-Seq Copy number alterations (CNA) 

Notes

Conflict of Interest

None.

References

  1. Belic J, Koch M, Ulz P et al (2015) Rapid identification of plasma DNA samples with increased ctDNA levels by a modified FAST-SeqS approach. Clin Chem 61:838–849CrossRefPubMedGoogle Scholar
  2. Bettegowda C, Sausen M, Leary RJ et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra24Google Scholar
  3. Chan KC, Jiang P, Chan CW et al (2013a) Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci U S A 110:18761–18768CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chan KC, Jiang P, Zheng YW et al (2013b) Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin Chem 59:211–224CrossRefPubMedGoogle Scholar
  5. Diaz LA Jr, Bardelli A (2014) Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol 32:579–586CrossRefPubMedPubMedCentralGoogle Scholar
  6. Forshew T, Murtaza M, Parkinson C et al (2012) Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 4:136ra168.Google Scholar
  7. Heidary M, Ulz P, Heitzer E et al (2014) The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res 16:421–430CrossRefPubMedPubMedCentralGoogle Scholar
  8. Heitzer E, Auer M, Gasch C et al (2013a) Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 73:2965–2975CrossRefPubMedGoogle Scholar
  9. Heitzer E, Auer M, Hoffmann EM et al (2013b) Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer 133:346–356CrossRefPubMedPubMedCentralGoogle Scholar
  10. Heitzer E, Auer M, Ulz P et al (2013c) Circulating tumor cells and DNA as liquid biopsies. Genome Med 5:73–83CrossRefPubMedPubMedCentralGoogle Scholar
  11. Heitzer E, Ulz P, Belic J et al (2013d) Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med 5:30–45CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kinde I, Papadopoulos N, Kinzler KW et al (2012) FAST-SeqS: a simple and efficient method for the detection of aneuploidy by massively parallel sequencing. PLoS ONE 7:e41162CrossRefPubMedPubMedCentralGoogle Scholar
  13. Leary RJ, Sausen M, Kinde I et al (2012) Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med 4:162ra154Google Scholar
  14. Lianidou ES, Strati A, Markou A (2014) Circulating tumor cells as promising novel biomarkers in solid cancers. Crit Rev Clin Lab Sci 51(3):160–171CrossRefPubMedGoogle Scholar
  15. Lim SH, Becker TM, Chua W et al (2014) Circulating tumour cells and circulating free nucleic acid as prognostic and predictive biomarkers in colorectal cancer. Cancer Lett 346:24–33CrossRefPubMedGoogle Scholar
  16. Mohan S, Heitzer E, Ulz P et al (2014) Changes in colorectal carcinoma genomes under anti-EGFR therapy identified by whole-genome plasma DNA sequencing. PLoS Genet 10:e1004271CrossRefPubMedPubMedCentralGoogle Scholar
  17. Murtaza M, Dawson S, Tsui DWY (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112Google Scholar
  18. Thierry AR, Mouliere F, El Messaoudi S et al (2014) Clinical validation of the detection of KRAS and BRAF mutations from circulating tumor DNA. Nat Med 20:430–435CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jelena Belic
    • 1
  • Marina Koch
    • 1
  • Peter Ulz
    • 1
  • Martina Auer
    • 1
  • Teresa Gerhalter
    • 2
  • Sumitra Mohan
    • 1
  • Katja Fischereder
    • 3
  • Edgar Petru
    • 4
  • Thomas Bauernhofer
    • 5
  • Jochen B. Geigl
    • 1
  • Michael R. Speicher
    • 1
  • Ellen Heitzer
    • 1
  1. 1.Institute of Human GeneticsMedical University of GrazGrazAustria
  2. 2.Institute of Molecular BiotechnologyTechnical University of GrazGrazAustria
  3. 3.Department of UrologyMedical University of GrazGrazAustria
  4. 4.Department of Obstetrics and GynecologyMedical University of GrazGrazAustria
  5. 5.Division of OncologyMedical University of GrazGrazAustria

Personalised recommendations