Advertisement

Modeling Proteolytically Driven Tumor Lymphangiogenesis

  • Georgios Lolas
  • Lasse Jensen
  • George C. Bourantas
  • Vasiliki Tsikourkitoudi
  • Konstantinos Syrigos
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 936)

Abstract

With the exception of a limited number of sites in the body, primary tumors infrequently lead to the demise of cancer patients. Instead, mortality and a significant degree of morbidity result from the growth of secondary tumors in distant organs. Tumor survival, growth and dissemination are associated with the formation of both new blood vessels (angiogenesis) and new lymph vessels (lymphagenesis or lymphangiogenesis). Although intensive research in tumor angiogenesis has been going on for the past four decades, experimental results in tumor lymphangiogenesis began to appear only in the last 10 years. In this chapter we expand the models proposed by Friedman, Lolas and Pepper on tumor lymphangiogenesis mediated by proteolytically and un-proteolytically processed growth factors (Friedman and Lolas G, Math Models Methods Appl Sci 15(01):95–107, 2005; Pepper and Lolas G, Selected topics in cancer modeling: genesis, evolution, immune competition, and therapy. In: The lymphatic vascular system in lymphangiogenesis invasion and metastasis a mathematical approach. Birkhäuser Boston, Boston, pp 1–22, 2008). The variables represent different cell densities and growth factors concentrations, and where possible the parameters are estimated from experimental and clinical data. The results obtained from computational simulations carried out on the model equations produce dynamic heterogeneous (“anarchic”) spatio-temporal solutions. More specifically, we observed coherent masses of tumor clusters migrating around and within the lymphatic network. Our findings are in line with recent experimental evidence that associate cluster formation with the minimization of cell loss favoring high local extracellular matrix proteolysis and thus protecting cancer invading cells from an immunological assault driven by the lymphatic network.

Keywords

Lymphangiogenesis Proteolysis Plasmin Mature VEGF-C Tumor clusters Tumor heterogeneity 

References

  1. 1.
    Friedman A, Lolas G (2005) Analysis of a mathematical model of tumor lymphangiogenesis. Math Models Methods Appl Sci 15(01):95–107CrossRefGoogle Scholar
  2. 2.
    Pepper MS, Lolas G (2008) Selected topics in cancer modeling: genesis, evolution, immune competition, and therapy. In: The lymphatic vascular system in lymphangiogenesis invasion and metastasis a mathematical approach. Birkhäuser Boston, Boston, pp 1–22Google Scholar
  3. 3.
    Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, Walter P (2014) Molecular biology of the cell. Garland, New YorkGoogle Scholar
  4. 4.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedCrossRefGoogle Scholar
  5. 5.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458PubMedCrossRefGoogle Scholar
  6. 6.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  7. 7.
    Pepper MS (2001) Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 7(3):462–468PubMedGoogle Scholar
  8. 8.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21): 1182–1186PubMedCrossRefGoogle Scholar
  9. 9.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257PubMedCrossRefGoogle Scholar
  10. 10.
    Plate K (2001) From angiogenesis to lymphangiogenesis. Nat Med 7(2):151–152PubMedCrossRefGoogle Scholar
  11. 11.
    Alitalo K, Carmeliet P (2002) Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1(3):219–227PubMedCrossRefGoogle Scholar
  12. 12.
    Brown P (2005) Lymphatic system: unlocking the drains. Nature 436(7050):456–458PubMedCrossRefGoogle Scholar
  13. 13.
    Holopainen T, Bry M, Alitalo K, Saaristo A (2011) Perspectives on lymphangiogenesis and angiogenesis in cancer. J Surg Oncol 103(6):484–488PubMedCrossRefGoogle Scholar
  14. 14.
    Duong T, Koopman P, Francois M (2012) Tumor lymphangiogenesis as a potential therapeutic target. J Oncol 2012:204946PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG (2014) Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer 14(3):159–172PubMedCrossRefGoogle Scholar
  16. 16.
    Hartveit E (1990) Attenuated cells in breast stroma: the missing lymphatic system of the breast. Histopathology 16(6):533–543PubMedCrossRefGoogle Scholar
  17. 17.
    Karkkainen MJ, Makinen T, Alitalo K (2002) Lymphatic endothelium: a new frontier of metastasis research. Nat Cell Biol 4(1):2–5CrossRefGoogle Scholar
  18. 18.
    Pepper MS, Tille JC, Nisato R, Skobe M (2003) Lymphangiogenesis and tumor metastasis. Cell Tissue Res 314(1):167–177PubMedCrossRefGoogle Scholar
  19. 19.
    Nisato RE, Tille JC, Pepper MS (2003) Lymphangiogenesis and tumor metastasis. Thromb Haemost 90(4):591–597PubMedGoogle Scholar
  20. 20.
    Jussila L, Alitalo K (2002) Vascular growth factors and lymphangiogenesis. Physiol Rev 82(3):673–700PubMedCrossRefGoogle Scholar
  21. 21.
    Oliver G, Detmar M (2002) The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. Genes Dev 16(7):773–783PubMedCrossRefGoogle Scholar
  22. 22.
    Oliver G (2004) Lymphatic vasculature development. Nat Rev Immunol 4(1):35–45PubMedCrossRefGoogle Scholar
  23. 23.
    Schulte-Merker S, Sabine A, Petrova TV (2011) Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol 193(4):607–618PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Reis-Filho JS, Schmitt FC (2003) Lymphangiogenesis in tumors: what do we know? Microsc Res Tech 60(2):171–180PubMedCrossRefGoogle Scholar
  25. 25.
    Shayan R, Achen MG, Stacker SA (2006) Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis 27(9):1729–1738PubMedCrossRefGoogle Scholar
  26. 26.
    Cao Y (2008) Why and how do tumors stimulate lymphangiogenesis? Lymphat Res Biol 6(3–4):145–148PubMedCrossRefGoogle Scholar
  27. 27.
    Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140(4):460–476PubMedCrossRefGoogle Scholar
  28. 28.
    Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K (1995) Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92(8):3566–3570PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80PubMedCrossRefGoogle Scholar
  30. 30.
    Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J, 15(2):290–298PubMedPubMedCentralGoogle Scholar
  31. 31.
    Lymboussaki A, Partanen TA, Olofsson B, Thomas-Crusells J, Fletcher CD, de Waal RM, Kaipainen A, Alitalo K (1998) Expression of the vascular endothelial growth factor C receptor VEGFR-3 in lymphatic endothelium of the skin and in vascular tumors. Am J Pathol 153(2):395–403PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Partanen TA, Paavonen K (2001) Lymphatic versus blood vascular endothelial growth factors and receptors in humans. Microsc Res Tech 55(2):108–121PubMedCrossRefGoogle Scholar
  33. 33.
    Su JL, Yen CJ, Chen PS, Chuang SE, Hong CC, Kuo IH, Chen HY, Hung MC, Kuo ML (2007) The role of the VEGF-C/VEGFR-3 axis in cancer progression. Br J Cancer 96(4):541–545PubMedCrossRefGoogle Scholar
  34. 34.
    Jackson DG, Prevo R, Clasper S, Banerji S (2001) LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol 22(6):317–321PubMedCrossRefGoogle Scholar
  35. 35.
    Sleeman JP, Krishnan J, Kirkin V, and Baumann P (2001) Markers for the lymphatic endothelium: in search of the holy grail? Microsc Res Tech 55(2):61–69PubMedCrossRefGoogle Scholar
  36. 36.
    Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG, Oliver G (2002) An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21(7):1505–1513PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hong YK, Detmar M (2003) Prox1, master regulator of the lymphatic vasculature phenotype. Cell Tissue Res 314(1):85–92PubMedCrossRefGoogle Scholar
  38. 38.
    Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478PubMedCrossRefGoogle Scholar
  39. 39.
    Ruoslahti E (1996) How cancer spreads. Sci Am 275(3):72–77PubMedCrossRefGoogle Scholar
  40. 40.
    Chang L, Kaipainen A, Folkman J (2002) Lymphangiogenesis new mechanisms. Ann N Y Acad Sci 979:111–119PubMedCrossRefGoogle Scholar
  41. 41.
    Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7(2):186–191PubMedCrossRefGoogle Scholar
  42. 42.
    Stacker SA, Hughes RA, Achen MG (2004) Molecular targeting of lymphatics for therapy. Curr Pharm Des 10(1):65–74PubMedCrossRefGoogle Scholar
  43. 43.
    Achen MG, McColl BK, Stacker SA (2005) Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7(2):121–127PubMedCrossRefGoogle Scholar
  44. 44.
    Achen MG, Stacker SA (2006) Tumor lymphangiogenesis and metastatic spread-new players begin to emerge. Int J Cancer 119(8):1755–1760PubMedCrossRefGoogle Scholar
  45. 45.
    Ji RC (2006) Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: new insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev 25(4):677–694PubMedCrossRefGoogle Scholar
  46. 46.
    Achen MG, Stacker SA (2008) Molecular control of lymphatic metastasis. Ann N Y Acad Sci 1131:225–234PubMedCrossRefGoogle Scholar
  47. 47.
    Swartz MA, Skobe M (2001) Lymphatic function, lymphangiogenesis, and cancer metastasis. Microsc Res Tech 55(2):92–99PubMedCrossRefGoogle Scholar
  48. 48.
    Podgrabinska S, Braun P, Velasco P, Kloos B, Pepper MS, Skobe M (2002) Molecular characterization of lymphatic endothelial cells. Proc Natl Acad Sci USA 99(25):16069–16074PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Mehes G, Witt A, Kubista E, Ambros PF (2001) Circulating breast cancer cells are frequently apoptotic. Am J Pathol 159(1):17–20PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Cao R, Ji H, Feng N, Zhang Y, Yang X, Andersson P, Sun Y, Tritsaris K, Hansen AJ, Dissing S, Cao Y (2012) Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci USA 109(39): 15894–15899PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ji H, Cao R, Yang Y, Zhang Y, Iwamoto H, Lim S, Nakamura M, Andersson P, Wang J, Sun Y, Dissing S, He X, Yang X, Cao Y (2014) TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat Commun 5:4944PubMedCrossRefGoogle Scholar
  52. 52.
    Cao Y (2005) Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer 5(9):735–743PubMedCrossRefGoogle Scholar
  53. 53.
    Le Guen L, Karpanen T, Schulte D, Harris NC, Koltowska K, Roukens G, Bower NI, van Impel A, Stacker SA, Achen MG, Schulte-Merker S, Hogan BM (2014) Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141(6):1239–1249PubMedCrossRefGoogle Scholar
  54. 54.
    Lolas G (2003) Mathematical modelling of the urokinase plasminogen activation system and its role in cancer invasion of tissue. Ph.D. thesis, Department of Mathematics, University of DundeeGoogle Scholar
  55. 55.
    Sidenius N, Blasi F (2003) The urokinase plasminogen activator system in cancer: recent advances and implication for prognosis and therapy. Cancer Metastasis Rev 22(2–3):205–222PubMedCrossRefGoogle Scholar
  56. 56.
    Chaplain MAJ, Lolas (2006) Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Netw Heterog Media 1(3):399–439Google Scholar
  57. 57.
    Blasi F, Vassalli JD, DanøK (1987) Urokinase-type plasminogen activator: proenzyme, receptor, and inhibitors. J Cell Biol 104(4):801–804Google Scholar
  58. 58.
    Shirasuna K, Saka M, Hayashido Y, Yoshioka H, Sugiura T, Matsuya T (1993) Extracellular matrix production and degradation by adenoid cystic carcinoma cells: participation of plasminogen activator and its inhibitor in matrix degradation. Cancer Res 53(1):147–152PubMedGoogle Scholar
  59. 59.
    Wolf K, Friedl P (2011) Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol 21(12):736–744PubMedCrossRefGoogle Scholar
  60. 60.
    Scianna M, Bell CG, Preziosi L (2013) A review of mathematical models for the formation of vascular networks. J Theor Biol 333:174–209PubMedCrossRefGoogle Scholar
  61. 61.
    Aznavoorian S, Murphy AN, Stetler-Stevenson WG, Liotta LA (1993) Molecular aspects of tumor cell invasion and metastasis. Cancer 71(4):1368–1383PubMedCrossRefGoogle Scholar
  62. 62.
    Wolf K, Friedl P (2009) Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin Exp Metastasis 26(4):289–298PubMedCrossRefGoogle Scholar
  63. 63.
    McCarthy JB, Palm SL, Furcht LT (1983) Migration by haptotaxis of a Schwann cell tumor line to the basement membrane glycoprotein laminin. J Cell Biol 97(3):772–777PubMedCrossRefGoogle Scholar
  64. 64.
    McCarthy JB, Furcht LT (1984) Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J Cell Biol 98(4):1474–1480PubMedCrossRefGoogle Scholar
  65. 65.
    McCarthy JB, Hagen ST, Furcht LT (1986) Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells. J Cell Biol 102(1):179–188PubMedCrossRefGoogle Scholar
  66. 66.
    Taraboletti G, Roberts DD, Liotta LA (1987) Thrombospondin-induced tumor cell migration: haptotaxis and chemotaxis are mediated by different molecular domains. J Cell Biol 105(5):2409–2415PubMedCrossRefGoogle Scholar
  67. 67.
    Aznavoorian S, Stracke ML, Krutzsch H, Schiffmann E, Liotta LA (1990) Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell Biol 110(4):1427–1438PubMedCrossRefGoogle Scholar
  68. 68.
    Aznavoorian S, Stracke ML, Parsons J, McClanahan J, Liotta LA (1996) Integrin alphavbeta3 mediates chemotactic and haptotactic motility in human melanoma cells through different signaling pathways. J Biol Chem 271(6):3247–3254PubMedCrossRefGoogle Scholar
  69. 69.
    Carter SB (1967) Haptotaxis and the mechanism of cell motility. Nature 213(5073):256–260PubMedCrossRefGoogle Scholar
  70. 70.
    Carter SB (1965) Principles of cell motility: the direction of cell movement and cancer invasion. Nature 208(5016):1183–1187PubMedCrossRefGoogle Scholar
  71. 71.
    Andreasen PA, Kjøller L, Christensen L, Duffy MJ (1997) The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72(1):1–22PubMedCrossRefGoogle Scholar
  72. 72.
    Andreasen PA, Egelund R, and Petersen HH (2000) The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57(1):25–40PubMedCrossRefGoogle Scholar
  73. 73.
    Wiig H, Keskin D, Kalluri R (2010) Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. Matrix Biol 29(8):645–656PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, Stacker SA, Achen MG, Alitalo K (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20(17):4762–4773PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Helm CL, Fleury ME, Zisch AH, Boschetti F, Swartz MA (2005) Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc Natl Acad Sci USA 102(44): 15779–15784PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Rutkowski JM, Swartz MA (2007) A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol 17(1):44–50PubMedCrossRefGoogle Scholar
  77. 77.
    Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA (2007) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell 11(6):526–538PubMedCrossRefGoogle Scholar
  78. 78.
    Kodama M, Kitadai Y, Tanaka M, Kuwai T, Tanaka S, Oue N, Yasui W, Chayama K (2008) Vascular endothelial growth factor C stimulates progression of human gastric cancer via both autocrine and paracrine mechanisms. Clin Cancer Res 14(22):7205–7214PubMedCrossRefGoogle Scholar
  79. 79.
    Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K, Wilting J (1997) VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188(1):96–109PubMedCrossRefGoogle Scholar
  80. 80.
    Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y, Saksela O, Kalkkinen N, Alitalo K (1997) Proteolytic processing regulates receptor specificity and activity of VEGF-C. EMBO J 16(13):3898–3911PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    McColl BK, Baldwin ME, Roufail S, Freeman C, Moritz RL, Simpson RJ, Alitalo K, Stacker SA, Achen MG (2003) Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D. J Exp Med 198(6):863–868PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Harris NC, Paavonen K, Davydova N, Roufail S, Sato T, Zhang YF, Karnezis T, Stacker SA, Achen MG (2011) Proteolytic processing of vascular endothelial growth factor-D is essential for its capacity to promote the growth and spread of cancer. FASEB J 25(8):2615–2625PubMedCrossRefGoogle Scholar
  83. 83.
    Harris NC, Achen MG (2014) The proteolytic activation of angiogenic and lymphangiogenic growth factors in cancer–its potential relevance for therapeutics and diagnostics. Curr Med Chem 21(16):1821–1842PubMedCrossRefGoogle Scholar
  84. 84.
    Oh CW, Hoover-Plow J, Plow EF (2003) The role of plasminogen in angiogenesis in vivo. J Thromb Haemost 1(8):1683–1687PubMedCrossRefGoogle Scholar
  85. 85.
    Pepper MS, Mandriota SJ, Jeltsch M, Kumar V, Alitalo K (1998) Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J Cell Physiol 177(3):439–452PubMedCrossRefGoogle Scholar
  86. 86.
    Pepper MS, Ferrara N, Orci L, Montesano R (1991) Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 181(2):902–906PubMedCrossRefGoogle Scholar
  87. 87.
    Pepper MS, Wasi S, Ferrara N, Orci L, Montesano R (1994) In vitro angiogenic and proteolytic properties of bovine lymphatic endothelial cells. Exp Cell Res 210(2):298–305PubMedCrossRefGoogle Scholar
  88. 88.
    Tille JC, Wang X, Lipson KE, McMahon G, Ferrara N, Zhu Z, Hicklin DJ, Sleeman JP, Eriksson U, Alitalo K, Pepper MS (2003) Vascular endothelial growth factor (VEGF) receptor-2 signaling mediates VEGF-C(deltaNdeltaC)- and VEGF-A-induced angiogenesis in vitro. Exp Cell Res 285(2):286–298PubMedCrossRefGoogle Scholar
  89. 89.
    Chaplain MAJ, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math Models Methods Appl Sci 15(11):1685–1734. dc.publisher: World ScientificGoogle Scholar
  90. 90.
    Bray D (2000) Cell movements: from molecules to motility. Garland Science, New YorkGoogle Scholar
  91. 91.
    Orme ME, Chaplain MA (1997) Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J Math Appl Med Biol 14(3):189–205PubMedCrossRefGoogle Scholar
  92. 92.
    Anderson AR, Chaplain MA (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60(5):857–899PubMedCrossRefGoogle Scholar
  93. 93.
    Chaplain MAJ, Lolas G (2005) Mathematical modelling of cancer cell invasion of tissue: the role of the urokinase plasminogen activation system. Math Models Methods Appl Sci 15(11):1685–1734CrossRefGoogle Scholar
  94. 94.
    Del Monte U (2009) Does the cell number 10(9) still really fit one gram of tumor tissue? Cell Cycle 8(3):505–506PubMedCrossRefGoogle Scholar
  95. 95.
    Mochan E and Keler T (1984) Plasmin degradation of cartilage proteoglycan. Biochim. Biophys. Acta 800(3):312–315PubMedCrossRefGoogle Scholar
  96. 96.
    Haessler U, Pisano M, Wu M, Swartz MA (2011) Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc Natl Acad Sci USA 108(14):5614–5619PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Stacker SA, Stenvers K, Caesar C, Vitali A, Domagala T, Nice E, Roufail S, Simpson RJ, Moritz R, Karpanen T, Alitalo K, Achen MG (1999) Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 274(45):32127–32136PubMedCrossRefGoogle Scholar
  98. 98.
    Yonemura Y, Endo Y, Tabata K, Kawamura T, Yun HY, Bandou E, Sasaki T, Miura M (2005) Role of VEGF-C and VEGF-D in lymphangiogenesis in gastric cancer. Int J Clin Oncol 10(5):318–327PubMedCrossRefGoogle Scholar
  99. 99.
    Issa A, Le TX, Shoushtari AN, Shields JD, Swartz MA (2009) Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res 69(1):349–357PubMedCrossRefGoogle Scholar
  100. 100.
    Tissot JD, Schneider P, Hauert J, Ruegg M, Kruithof EK, Bachmann F (1982) Isolation from human plasma of a plasminogen activator identical to urinary high molecular weight urokinase. J Clin Invest 70(6):1320–1323PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Wun TC, Schleuning WD, Reich E (1982) Isolation and characterization of urokinase from human plasma. J Biol Chem 257(6):3276–3283PubMedGoogle Scholar
  102. 102.
    Vassalli JD, Baccino D, Belin D (1985) A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol 100(1):86–92PubMedCrossRefGoogle Scholar
  103. 103.
    Markus G, Camiolo SM, Kohga S, Madeja JM, Mittelman A (1983) Plasminogen activator secretion of human tumors in short-term organ culture, including a comparison of primary and metastatic colon tumors. Cancer Res 43(11):5517–5525PubMedGoogle Scholar
  104. 104.
    Barlow GH (1976) Proteolytic enzymes, part B (methods in enzymology). Academic Press, New YorkGoogle Scholar
  105. 105.
    Ellis V (1996) Functional analysis of the cellular receptor for urokinase in plasminogen activation. Receptor binding has no influence on the zymogenic nature of pro-urokinase. J Biol Chem 271(25):14779–14784PubMedGoogle Scholar
  106. 106.
    Wu HL, Shi GY, and Bender ML (1987) Preparation and purification of microplasmin. Proc Natl Acad Sci USA 84(23):8292–8295PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Sherratt JA, Murray JD (1990) Models of epidermal wound healing. Proc Biol Sci 241(1300):29–36PubMedCrossRefGoogle Scholar
  108. 108.
    Stokes CL, Lauffenburger DA, Williams SK (1991) Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J Cell Sci 99(Pt 2):419–430PubMedGoogle Scholar
  109. 109.
    Robbins KC, Summaria L, Elwyn D, Barlow GH (1965) Further studies on the purification and characterization of human plasminogen and plasmin. J Biol Chem 240:541–550PubMedGoogle Scholar
  110. 110.
    Fleury ME, Boardman KC, Swartz MA (2006) Autologous morphogen gradients by subtle interstitial flow and matrix interactions. Biophys J 91(1):113–121PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Chaplain MA (1995) The mathematical modelling of tumour angiogenesis and invasion. Acta Biotheor 43(4):387–402PubMedCrossRefGoogle Scholar
  112. 112.
    Chaplain MAJ, Giles SM, Sleeman BD, Jarvis RJ (1995) A mathematical analysis of a model for tumor angiogenesis. J Math Biol 33: 744–770PubMedCrossRefGoogle Scholar
  113. 113.
    White WF, Barlow GH, Mozen MM (1966) The isolation and characterization of plasminogen activators (urokinase) from human urine. Biochemistry 5(7):2160–2169PubMedCrossRefGoogle Scholar
  114. 114.
    Shin Y, Han S, Jeon JS, Yamamoto K, Zervantonakis IK, Sudo R, Kamm RD, Chung S (2012) Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels. Nat Protoc 7(7):1247–1259PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Yu W, Kim J, Ossowski L (1997) Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy. J Cell Biol 137(3):767–777PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Stokes CL, Lauffenburger DA (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152(3):377–403PubMedCrossRefGoogle Scholar
  117. 117.
    Chaplain MAJ (1996) Avascular growth, angiogenesis and vascular growth in solid ttumour: the mathematical modelling of the stages of tumour development. Math Comput Model 23(6):47–87CrossRefGoogle Scholar
  118. 118.
    Leak LV, Jones M (1993) Lymphatic endothelium isolation, characterization and long-term culture. Anat Rec 236(4):641–652PubMedCrossRefGoogle Scholar
  119. 119.
    Nguyen VP, Chen SH, Trinh J, Kim H, Coomber BL, Dumont DJ (2007) Differential response of lymphatic, venous and arterial endothelial cells to angiopoietin-1 and angiopoietin-2. BMC Cell Biol 8:10PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4(12):1317–1326PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Weich HA, Bando H, Brokelmann M, Baumann P, Toi M, Barleon B, Alitalo K, Sipos B, Sleeman J (2004) Quantification of vascular endothelial growth factor-C (VEGF-C) by a novel ELISA. J Immunol Methods 285(2):145–155PubMedCrossRefGoogle Scholar
  122. 122.
    Bocci G, Fasciani A, Danesi R, Viacava P, Genazzani AR, Del Tacca M (2001) In-vitro evidence of autocrine secretion of vascular endothelial growth factor by endothelial cells from human placental blood vessels. Mol Hum Reprod 7(8):771–777PubMedCrossRefGoogle Scholar
  123. 123.
    Bianchi A, Painter KJ, Sherratt JA (2015) A mathematical model for lymphangiogenesis in normal and diabetic wounds. J Theor Biol 383:61–86PubMedCrossRefGoogle Scholar
  124. 124.
    Imoukhuede PI, Dokun AO, Annex BH, Popel AS (2013) Endothelial cell-by-cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am J Physiol Heart Circ Physiol 304(8):H1085–1093PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Baldwin ME, Catimel B, Nice EC, Roufail S, Hall NE, Stenvers KL, Karkkainen MJ, Alitalo K, Stacker SA, and Achen MG (2001) The specificity of receptor binding by vascular endothelial growth factor-d is different in mouse and man. J Biol Chem 276(22):19166–19171PubMedCrossRefGoogle Scholar
  126. 126.
    Bando H, Brokelmann M, Toi M, Alitalo K, Sleeman JP, Sipos B, Grone HJ, Weich HA (2004) Immunodetection and quantification of vascular endothelial growth factor receptor-3 in human malignant tumor tissues. Int J Cancer 111(2):184–191PubMedCrossRefGoogle Scholar
  127. 127.
    Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, Adams S, Davy A, Deutsch U, Luthi U, Barberis A, Benjamin LE, Makinen T, Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486PubMedCrossRefGoogle Scholar
  128. 128.
    Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G, Pepper MS (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20(4):672–682PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Enholm B, Paavonen K, Ristimaki A, Kumar V, Gunji Y, Klefstrom J, Kivinen L, Laiho M, Olofsson B, Joukov V, Eriksson U, Alitalo K (1997) Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 14(20):2475–2483PubMedCrossRefGoogle Scholar
  130. 130.
    Ristimaki A, Narko K, Enholm B, Joukov V, Alitalo K (1998) Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 273(14):8413–8418PubMedCrossRefGoogle Scholar
  131. 131.
    Atkins P, De Paula J (2006) Physical chemistry, 8th edn. Oxford University Press, OxfordGoogle Scholar
  132. 132.
    Estreicher A, Muhlhauser J, Carpentier JL, Orci L, Vassalli JD (1990) The receptor for urokinase type plasminogen activator polarizes expression of the protease to the leading edge of migrating monocytes and promotes degradation of enzyme inhibitor complexes. J Cell Biol 111(2):783–792PubMedCrossRefGoogle Scholar
  133. 133.
    Stoppelli MP, Corti A, Soffientini A, Cassani G, Blasi F, Assoian RK (1985) Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci USA 82(15):4939–4943PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Bajpai A, Baker JB (1985) Cryptic urokinase binding sites on human foreskin fibroblasts. Biochem Biophys Res Commun 133(2):475–482PubMedCrossRefGoogle Scholar
  135. 135.
    Barnathan ES, Kuo A, Rosenfeld L, Kariko K, Leski M, Robbiati F, Nolli ML, Henkin J, Cines DB (1990) Interaction of single-chain urokinase-type plasminogen activator with human endothelial cells. J Biol Chem 265(5):2865–2872PubMedGoogle Scholar
  136. 136.
    Sillaber C, Baghestanian M, Hofbauer R, Virgolini I, Bankl HC, Fureder W, Agis H, Willheim M, Leimer M, Scheiner O, Binder BR, Kiener HP, Bevec D, Fritsch G, Majdic O, Kress HG, Gadner H, Lechner K, Valent P (1997) Molecular and functional characterization of the urokinase receptor on human mast cells. J Biol Chem 272(12):7824–7832PubMedCrossRefGoogle Scholar
  137. 137.
    Olson D, Pollanen J, Høyer-Hansen G, Rønne E, Sakaguchi K, Wun TC, Appella E, Danø K, Blasi F (1992) Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor. J Biol Chem 267(13):9129–9133PubMedGoogle Scholar
  138. 138.
    Mignatti P, Mazzieri R, Rifkin DB (1991) Expression of the urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor. J Cell Biol 113(5):1193–1201PubMedCrossRefGoogle Scholar
  139. 139.
    Grover WH, Bryan AK, Diez-Silva M, Suresh S, Higgins JM, Manalis SR (2011) Measuring single-cell density. Proc Natl Acad Sci USA 108(27):10992–10996PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Camiolo SM, Markus G, Englander LS, Siuta MR, Hobika GH, Kohga S (1984) Plasminogen activator content and secretion in explants of neoplastic and benign human prostate tissues. Cancer Res 44(1):311–318PubMedGoogle Scholar
  141. 141.
    Harvey SR, Lawrence DD, Madeja JM, Abbey SJ, Markus G (1988) Secretion of plasminogen activators by human colorectal and gastric tumor explants. Clin Exp Metastasis 6(6):431–450PubMedCrossRefGoogle Scholar
  142. 142.
    Werb Z, Bainton DF, Jones PA (1980) Degradation of connective tissue matrices by macrophages. III. Morphological and biochemical studies on extracellular, pericellular, and intracellular events in matrix proteolysis by macrophages in culture. J Exp Med 152(6):1537–1553PubMedCrossRefGoogle Scholar
  143. 143.
    Allen LE, Dubeau L, Alvarez O, Jones PA (1990) Rapid degradation of extracellular matrix proteins by normal human uroepithelial cells. Cancer Res 50(6):1897–1904PubMedGoogle Scholar
  144. 144.
    Jones PA, Werb Z (1980) Degradation of connective tissue matrices by macrophages. II. Influence of matrix composition on proteolysis of glycoproteins, elastin, and collagen by macrophages in culture. J Exp Med 152(6):1527–1536PubMedCrossRefGoogle Scholar
  145. 145.
    Pins GD, Collins-Pavao ME, Van De Water L, Yarmush ML, Morgan JR (2000) Plasmin triggers rapid contraction and degradation of fibroblast-populated collagen lattices. J Invest Dermatol 114(4):647–653PubMedCrossRefGoogle Scholar
  146. 146.
    Jones PA, Scott-Burden T, Gevers W (1979) Glycoprotein, elastin, and collagen secretion by rat smooth muscle cells. Proc Natl Acad Sci USA 76(1):353–357PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Miyashita C, Wenzel E, Heiden M (1988) Plasminogen: a brief introduction into its biochemistry and function. Haemostasis 18(1):7–13PubMedGoogle Scholar
  148. 148.
    Skeel RD, Berzins M (1990) A method for the spatial discretization of parabolic equations in one space variable. SIAM J Sci Stat Comput 11(1): 1–32CrossRefGoogle Scholar
  149. 149.
    Kramer RH, Bensch KG, Wong J (1986) Invasion of reconstituted basement membrane matrix by metastatic human tumor cells. Cancer Res 46(4 Pt 2):1980–1989PubMedGoogle Scholar
  150. 150.
    Fidler IJ (1978) Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res 38(9):2651–2660PubMedGoogle Scholar
  151. 151.
    Friedl P, Noble PB, Walton PA, Laird DW, Chauvin PJ, Tabah RJ, Black M, Zanker KS (1995) Migration of coordinated cell clusters in mesenchymal and epithelial cancer explants in vitro. Cancer Res 55(20):4557–4560PubMedGoogle Scholar
  152. 152.
    Friedl P, Brocker EB (2000) The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci 57(1):41–64PubMedCrossRefGoogle Scholar
  153. 153.
    Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, Brannigan BW, Kapur R, Stott SL, Shioda T, Ramaswamy S, Ting DT, Lin CP, Toner M, Haber DA, Maheswaran S (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Kolega J (1981) The movement of cell clusters in vitro: morphology and directionality. J Cell Sci 49:15–32PubMedGoogle Scholar
  155. 155.
    Liotta LA, Saidel MG, Kleinerman J (1976) The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 36(3): 889–894PubMedGoogle Scholar
  156. 156.
    Menashi S, Dehem M, Souliac I, Legrand Y, Fridman R (1998) Density-dependent regulation of cell-surface association of matrix metalloproteinase-2 (MMP-2) in breast-carcinoma cells. Int J Cancer 75(2):259–265PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Georgios Lolas
    • 1
  • Lasse Jensen
    • 2
    • 3
  • George C. Bourantas
    • 4
  • Vasiliki Tsikourkitoudi
    • 1
  • Konstantinos Syrigos
    • 1
  1. 1.Oncology Unit, 3rd Department of Internal MedicineSotiria General HospitalAthensGreece
  2. 2.Department of MicrobiologyTumor and Cell Biology (MTC), C1, Karolinska InstituteStockholmSweden
  3. 3.Department of Medical and Health SciencesLinköping UniversityLinköpingSweden
  4. 4.Faculty of Science, Technology and CommunicationUniversity of LuxembourgLuxembourg CityLuxembourg

Personalised recommendations