Advertisement

Circulating Tumor Cells: When a Solid Tumor Meets a Fluid Microenvironment

  • Katarzyna A. Rejniak
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 936)

Abstract

Solid tumor dissemination from the primary site to the sites of metastasis involves tumor cell transport through the blood or lymph circulation systems. Once the tumor cells enter the bloodstream, they encounter a new hostile microenvironment. The cells must withstand hemodynamic forces and overcome the effects of fluid shear. The cells are exposed to immunological signaling insults from leukocytes, to collisions with erythrocytes, and to interactions with platelets or macrophages. Finally, the cells need to attach to the blood vessel walls and extravasate to the surrounding stroma to form tumor metastases. Although only a small fraction of invasive cells is able to complete the metastatic process, most cancer-related deaths are the result of tumor metastasis. Thus, investigating the intracellular properties of circulating tumor cells and the extracellular conditions that allow the tumor cells to survive and thrive in this microenvironment is of vital interest. In this chapter, we discuss the intravascular microenvironment that the circulating tumor cells must endure. We summarize the current experimental and computational literature on tumor cells in the circulation system. We also illustrate various aspects of the intravascular transport of circulating tumor cells using a mathematical model based on immersed boundary principles.

Keywords

Circulating tumor cells Metastatic cascade Tumor microemboli Cell deformation Computational modeling Immersed boundary method 

Notes

Acknowledgment

This work was initiated through a Moffitt-PSOC Pilot Project from the Physical Sciences-Oncology Program Phase I at the National Institute of Health U54-CA-143970.

References

  1. 1.
    Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, Brannigan BW, Kapur R, Stott SL, Shioda T, Ramaswamy S, Ting DT, Lin CP, Toner M, Haber DA, Maheswaran S (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122. doi: 10.1016/j.cell.2014.07.013 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Alunni-Fabbroni M, Sandri MT (2010) Circulating tumour cells in clinical practice: methods of detection and possible characterization. Methods 50(4):289–297. doi: 10.1016/j.ymeth.2010.01.027 CrossRefPubMedGoogle Scholar
  3. 3.
    Bose S, Das SK, Karp JM, Karnik R (2010) A semianalytical model to study the effect of cortical tension on cell rolling. Biophys J 99(12):3870–3879. doi: 10.1016/j.bpj.2010.10.038 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Carlsson A, Nair VS, Luttgen MS, Keu KV, Horng G, Vasanawala M, Kolatkar A, Jamali M, Iagaru AH, Kuschner W, Loo BW Jr, Shrager JB, Bethel K, Hoh CK, Bazhenova L, Nieva J, Kuhn P, Gambhir SS (2014) Circulating tumor microemboli diagnostics for patients with non-small-cell lung cancer. J Thorac Oncol 9(8):1111–1119. doi: 10.1097/JTO.0000000000000235 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen MB, Lamar JM, Li R, Hynes RO, Kamm RD (2016) Elucidation of the roles of tumor integrin ss1 in the extravasation stage of the metastasis cascade. Cancer Res 76:2513–2524. doi: 10.1158/0008-5472.CAN-15-1325 CrossRefPubMedGoogle Scholar
  6. 6.
    Chen MB, Whisler JA, Jeon JS, Kamm RD (2013) Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr Biol (Camb) 5(10):1262–1271. doi: 10.1039/c3ib40149a CrossRefGoogle Scholar
  7. 7.
    Cho EH, Wendel M, Luttgen M, Yoshioka C, Marrinucci D, Lazar D, Schram E, Nieva J, Bazhenova L, Morgan A, Ko AH, Korn WM, Kolatkar A, Bethel K, Kuhn P (2012) Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol 9(1):016001. doi: 10.1088/1478-3975/9/1/016001 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Crowl L, Fogelson AL (2011) Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions. J Fluid Mech 676:348–375CrossRefGoogle Scholar
  9. 9.
    Diamond E, Lee GY, Akhtar NH, Kirby BJ, Giannakakou P, Tagawa ST, Nanus DM (2012) Isolation and characterization of circulating tumor cells in prostate cancer. Front Oncol 2:131. doi: 10.3389/fonc.2012.00131 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Farace F, Massard C, Vimond N, Drusch F, Jacques N, Billiot F, Laplanche A, Chauchereau A, Lacroix L, Planchard D, Le Moulec S, Andre F, Fizazi K, Soria JC, Vielh P (2011) A direct comparison of cell search and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br J Cancer 105(6):847–853. doi: 10.1038/bjc.2011.294 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fedosov DA, Gompper G (2014) White blood cell margination in microcirculation. Soft Matter 10(17):2961–2970. doi: 10.1039/c3sm52860j CrossRefPubMedGoogle Scholar
  12. 12.
    Fitzgibbon S, Spann AP, Qi QM, Shaqfeh ES (2015) In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit. Biophys J 108(10):2601–2608. doi: 10.1016/j.bpj.2015.04.013 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fuhrmann A, Staunton JR, Nandakumar V, Banyai N, Davies PC, Ros R (2011) AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells. Phys Biol 8(1):015007. doi: 10.1088/1478-3975/8/1/015007 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11(2):123–134. doi: 10.1038/nrc3004 CrossRefPubMedGoogle Scholar
  15. 15.
    Hayashi K, Jiang P, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Moossa AR, Bouvet M, Hoffman RM (2007) Real-time imaging of tumor-cell shedding and trafficking in lymphatic channels. Cancer Res 67(17):8223–8228. doi: 10.1158/0008-5472.CAN-07-1237 CrossRefPubMedGoogle Scholar
  16. 16.
    Hoffman RM (2008) Imaging in mice with fluorescent proteins: from macro to subcellular. Sensors 8:1157–1173CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Hou JM, Krebs M, Ward T, Morris K, Sloane R, Blackhall F, Dive C (2010) Circulating tumor cells, enumeration and beyond. Cancers (Basel) 2(2):1236–1250. doi: 10.3390/cancers2021236 CrossRefGoogle Scholar
  18. 18.
    Hsieh HB, Marrinucci D, Bethel K, Curry DN, Humphrey M, Krivacic RT, Kroener J, Kroener L, Ladanyi A, Lazarus N, Kuhn P, Bruce RH, Nieva J (2006) High speed detection of circulating tumor cells. Biosens Bioelectron 21(10):1893–1899. doi: 10.1016/j.bios.2005.12.024 CrossRefPubMedGoogle Scholar
  19. 19.
    Jadhav S, Eggleton CD, Konstantopoulos K (2005) A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophys J 88(1):96–104. doi: 10.1529/biophysj.104.051029 CrossRefPubMedGoogle Scholar
  20. 20.
    Kelley LC, Lohmer LL, Hagedorn EJ, Sherwood DR (2014) Traversing the basement membrane in vivo: a diversity of strategies. J Cell Biol 204(3):291–302. doi: 10.1083/jcb.201311112 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ketene AN, Schmelz EM, Roberts PC, Agah M (2012) The effects of cancer progression on the viscoelasticity of ovarian cell cytoskeleton structures. Nanomedicine 8(1):93–102. doi: 10.1016/j.nano.2011.05.012 PubMedGoogle Scholar
  22. 22.
    Khismatullin DB, Truskey GA (2005) Three-dimensional numerical simualtion of receptor-mediated leukocyte adhesion to surfaces: effects of cell deformability and viscoelasticity. Phys Fluids 17:031505CrossRefGoogle Scholar
  23. 23.
    Khismatullin DB, Truskey GA (2012) Leukocyte rolling on P-selectin: a three-dimensional numerical study of the effect of cytoplasmic viscosity. Biophys J 102(8):1757–1766. doi: 10.1016/j.bpj.2012.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim Y, Williams KC, Gavin CT, Jardine E, Chambers AF, Leong HS (2016) Quantification of cancer cell extravasation in vivo. Nat Protoc 11(5):937–948. doi: 10.1038/nprot.2016.050 CrossRefPubMedGoogle Scholar
  25. 25.
    King MR, Hammer DA (2001) Multiparticle adhesive dynamics: hydrodynamic recruitment of rolling leukocytes. Proc Natl Acad Sci U S A 98(26):14919–14924. doi: 10.1073/pnas.261272498 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    King MR, Hammer DA (2001) Multiparticle adhesive dynamics. Interactions between stably rolling cells. Biophys J 81(2):799–813. doi: 10.1016/S0006-3495(01)75742-6 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    King MR, Phillips KG, Mitrugno A, Lee TR, de Guillebon AM, Chandrasekaran S, McGuire MJ, Carr RT, Baker-Groberg SM, Rigg RA, Kolatkar A, Luttgen M, Bethel K, Kuhn P, Decuzzi P, McCarty OJ (2015) A physical sciences network characterization of circulating tumor cell aggregate transport. Am J Physiol Cell Physiol 308(10):C792–C802. doi: 10.1152/ajpcell.00346.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kirby BJ, Jodari M, Loftus MS, Gakhar G, Pratt ED, Chanel-Vos C, Gleghorn JP, Santana SM, Liu H, Smith JP, Navarro VN, Tagawa ST, Bander NH, Nanus DM, Giannakakou P (2012) Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. PLoS One 7(4):e35976. doi: 10.1371/journal.pone.0035976 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Laurent VM, Planus E, Fodil R, Isabey D (2003) Mechanical assessment by magnetocytometry of the cytosolic and cortical cytoskeletal compartments in adherent epithelial cells. Biorheology 40(1–3):235–240PubMedGoogle Scholar
  30. 30.
    Lazar DC, Cho EH, Luttgen MS, Metzner TJ, Uson ML, Torrey M, Gross ME, Kuhn P (2012) Cytometric comparisons between circulating tumor cells from prostate cancer patients and the prostate-tumor-derived LNCaP cell line. Phys Biol 9(1):016002. doi: 10.1088/1478-3975/9/1/016002 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Maheswaran S, Haber DA (2010) Circulating tumor cells: a window into cancer biology and metastasis. Curr Opin Genet Dev 20(1):96–99. doi: 10.1016/j.gde.2009.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Marrinucci D, Bethel K, Kolatkar A, Luttgen MS, Malchiodi M, Baehring F, Voigt K, Lazar D, Nieva J, Bazhenova L, Ko AH, Korn WM, Schram E, Coward M, Yang X, Metzner T, Lamy R, Honnatti M, Yoshioka C, Kunken J, Petrova Y, Sok D, Nelson D, Kuhn P (2012) Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol 9(1):016003. doi: 10.1088/1478-3975/9/1/016003 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Marrinucci D, Bethel K, Lazar D, Fisher J, Huynh E, Clark P, Bruce R, Nieva J, Kuhn P (2010) Cytomorphology of circulating colorectal tumor cells: a small case series. J Oncol 2010:861341. doi: 10.1155/2010/861341 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Marrinucci D, Bethel K, Luttgen M, Bruce RH, Nieva J, Kuhn P (2009) Circulating tumor cells from well-differentiated lung adenocarcinoma retain cytomorphologic features of primary tumor type. Arch Pathol Lab Med 133(9):1468–1471. doi: 10.1043/1543-2165-133.9.1468 PubMedPubMedCentralGoogle Scholar
  35. 35.
    Mathur AB, Truskey GA, Reichert WM (2000) Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys J 78(4):1725–1735CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    McCarty OJ, Ku D, Sugimoto M, King MR, Cosemans JM, Neeves KB, Subcommittee on Biorheology (2016) Dimensional analysis and scaling relevant to flow models of thrombus formation: communication from the SSC of the ISTH. J Thromb Haemost 14(3):619–622. doi: 10.1111/jth.13241 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    McCarty OJ, Mousa SA, Bray PF, Konstantopoulos K (2000) Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 96(5):1789–1797PubMedGoogle Scholar
  38. 38.
    Migliorini C, Qian Y, Chen H, Brown EB, Jain RK, Munn LL (2002) Red blood cells augment leukocyte rolling in a virtual blood vessel. Biophys J 83(4):1834–1841. doi: 10.1016/S0006-3495(02)73948-9 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mina LA, Sledge GW Jr (2011) Rethinking the metastatic cascade as a therapeutic target. Nat Rev Clin Oncol 8(6):325–332. doi: 10.1038/nrclinonc.2011.59 PubMedGoogle Scholar
  40. 40.
    Mitchell MJ, Castellanos CA, King MR (2015) Immobilized surfactant-nanotube complexes support selectin-mediated capture of viable circulating tumor cells in the absence of capture antibodies. J Biomed Mater Res A 103(10):3407–3418. doi: 10.1002/jbm.a.35445 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mitchell MJ, King MR (2013) Computational and experimental models of cancer cell response to fluid shear stress. Front Oncol 3:44. doi: 10.3389/fonc.2013.00044 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mitrugno A, Tormoen GW, Kuhn P, McCarty OJ (2016) The prothrombotic activity of cancer cells in the circulation. Blood Rev 30(1):11–19. doi: 10.1016/j.blre.2015.07.001 CrossRefPubMedGoogle Scholar
  43. 43.
    Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284. doi: 10.1038/nrc2622 CrossRefPubMedGoogle Scholar
  44. 44.
    Nourshargh S, Hordijk PL, Sixt M (2010) Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol 11(5):366–378. doi: 10.1038/nrm2889 CrossRefPubMedGoogle Scholar
  45. 45.
    Oakman C, Pestrin M, Bessi S, Galardi F, Di Leo A (2010) Significance of micrometastases: circulating tumor cells and disseminated tumor cells in early breast cancer. Cancers (Basel) 2(2):1221–1235. doi: 10.3390/cancers2021221 CrossRefGoogle Scholar
  46. 46.
    Park S, Koch D, Cardenas R, Kas J, Shih CK (2005) Cell motility and local viscoelasticity of fibroblasts. Biophys J 89(6):4330–4342. doi: 10.1529/biophysj.104.053462 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252–271CrossRefGoogle Scholar
  48. 48.
    Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25:220–252CrossRefGoogle Scholar
  49. 49.
    Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517CrossRefGoogle Scholar
  50. 50.
    Peskin CS, McQueen DM (1995) A general method for the computer simulation of biological systems interacting with fluids. Symp Soc Exp Biol 49:265–276PubMedGoogle Scholar
  51. 51.
    Phillips KG, Kuhn P, McCarty OJ (2014) Physical biology in cancer. 2. The physical biology of circulating tumor cells. Am J Physiol Cell Physiol 306(2):C80–C88. doi: 10.1152/ajpcell.00294.2013 CrossRefPubMedGoogle Scholar
  52. 52.
    Phillips KG, Lee AM, Tormoen GW, Rigg RA, Kolatkar A, Luttgen M, Bethel K, Bazhenova L, Kuhn P, Newton P, McCarty OJ (2015) The thrombotic potential of circulating tumor microemboli: computational modeling of circulating tumor cell-induced coagulation. Am J Physiol Cell Physiol 308(3):C229–C236. doi: 10.1152/ajpcell.00315.2014 CrossRefPubMedGoogle Scholar
  53. 53.
    Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P (2006) Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med 203(12):2569–2575. doi: 10.1084/jem.20060925 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Pozrikidis C (2005) Numerical simulation of cell motion in tube flow. Ann Biomed Eng 33(2): 165–178CrossRefPubMedGoogle Scholar
  55. 55.
    Rejniak KA (2007) An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. J Theor Biol 247(1):186–204. doi: 10.1016/j.jtbi.2007.02.019 CrossRefPubMedGoogle Scholar
  56. 56.
    Rejniak KA (2007) Modelling the development of complex tissues using individual viscoelastic cells. In: Anderson A, Chaplain MC, Rejniak KA (eds) Single-cell-based models in biology and medicine. Birkhauser-Verlag, BostonGoogle Scholar
  57. 57.
    Rejniak KA (2012) Investigating dynamical deformations of tumor cells in circulation: predictions from a theoretical model. Front Oncol 2:111. doi: 10.3389/fonc.2012.00111 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rejniak KA, Dillon RH (2007) A single cell based model of the Ductal tumor microarchitecture. Comput Math Methods Med 8:51–69CrossRefGoogle Scholar
  59. 59.
    Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J, Shattil S, Klemke R (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123(Pt 13):2332–2341. doi: 10.1242/jcs.069443 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci U S A 104(44):17406–17411. doi: 10.1073/pnas.0703446104 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Swaby RF, Cristofanilli M (2011) Circulating tumor cells in breast cancer: a tool whose time has come of age. BMC Med 9:43. doi: 10.1186/1741-7015-9-43 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Swaminathan V, Mythreye K, O’Brien ET, Berchuck A, Blobe GC, Superfine R (2011) Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res 71(15):5075–5080. doi: 10.1158/0008-5472.CAN-11-0247 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Takeishi N, Imai Y, Nakaaki K, Yamaguchi T, Ishikawa T (2014) Leukocyte margination at arteriole shear rate. Physiol Rep 2(6):e12037. doi: 10.14814/phy2.12037 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Takeishi N, Imai Y, Yamaguchi T, Ishikawa T (2015) Flow of a circulating tumor cell and red blood cells in microvessels. Phys Rev E Stat Nonlin Soft Matter Phys 92(6–1):063011. doi: 10.1103/PhysRevE.92.063011 CrossRefPubMedGoogle Scholar
  65. 65.
    Tang J, Hunt CA (2010) Identifying the rules of engagement enabling leukocyte rolling, activation, and adhesion. PLoS Comput Biol 6(2):e1000681. doi: 10.1371/journal.pcbi.1000681 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Tormoen GW, Haley KM, Levine RL, McCarty OJ (2012) Do circulating tumor cells play a role in coagulation and thrombosis? Front Oncol 2:115. doi: 10.3389/fonc.2012.00115 PubMedPubMedCentralGoogle Scholar
  67. 67.
    Tremblay PL, Huot J, Auger FA (2008) Mechanisms by which E-selectin regulates diapedesis of colon cancer cells under flow conditions. Cancer Res 68(13):5167–5176. doi: 10.1158/0008-5472.CAN-08-1229 CrossRefPubMedGoogle Scholar
  68. 68.
    Turitto VT (1982) Blood viscosity, mass transport, and thrombogenesis. Prog Hemost Thromb 6:139–177PubMedGoogle Scholar
  69. 69.
    Wendel M, Bazhenova L, Boshuizen R, Kolatkar A, Honnatti M, Cho EH, Marrinucci D, Sandhu A, Perricone A, Thistlethwaite P, Bethel K, Nieva J, Heuvel M, Kuhn P (2012) Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology. Phys Biol 9(1):016005. doi: 10.1088/1478-3967/9/1/016005 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Weninger W, Biro M, Jain R (2014) Leukocyte migration in the interstitial space of non-lymphoid organs. Nat Rev Immunol 14(4):232–246. doi: 10.1038/nri3641 CrossRefPubMedGoogle Scholar
  71. 71.
    Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11(7):512–522. doi: 10.1038/nrc3080 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yamauchi K, Yang M, Jiang P, Xu M, Yamamoto N, Tsuchiya H, Tomita K, Moossa AR, Bouvet M, Hoffman RM (2006) Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res 66(8):4208–4214. doi: 10.1158/0008-5472.CAN-05-3927 CrossRefPubMedGoogle Scholar
  73. 73.
    Yamauchi K, Yang M, Jiang P, Yamamoto N, Xu M, Amoh Y, Tsuji K, Bouvet M, Tsuchiya H, Tomita K, Moossa AR, Hoffman RM (2005) Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res 65(10):4246–4252. doi: 10.1158/0008-5472.CAN-05-0069 CrossRefPubMedGoogle Scholar
  74. 74.
    Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192(3):373–382. doi: 10.1083/jcb.201010021 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Zhang J, Johnson PC, Popel AS (2009) Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvasc Res 77(3):265–272. doi: 10.1016/j.mvr.2009.01.010 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Integrated Mathematical Oncology Department, Center of Excellence in Cancer Imaging and TechnologyH. Lee Moffitt Cancer Center & Research InstituteTampaUSA
  2. 2.Department of Oncologic Sciences, College of MedicineUniversity of South FloridaTampaUSA

Personalised recommendations