A Declarative Semantics for a Fuzzy Logic Language Managing Similarities and Truth Degrees

  • Pascual Julián-Iranzo
  • Ginés Moreno
  • Jaime Penabad
  • Carlos Vázquez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9718)


This work proposes a declarative semantics based on a fuzzy variant of the classical notion of least Herbrand model for the so-called FASILL language (acronym of “Fuzzy Aggregators and Similarity Into a Logic Language”) which has been recently designed and implemented in our research group for coping with implicit/explicit truth degree annotations, a great variety of connectives and unification by similarity.


Fuzzy logic programming Similarity Herbrand model 


  1. 1.
    Arcelli, F.: Likelog for flexible query answering. Soft Comput. 7(2), 107–114 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Arcelli, F., Formato, F.: Likelog: a logic programming language for flexible data retrieval. In: Proceedings of the ACM Symposium on Applied Computing, SAC 1999, San Antonio, Texas, pp. 260–267. ACM, Artificial Intelligence and Computational Logic (1999)Google Scholar
  3. 3.
    Caballero, R., Rodríguez-Artalejo, M., Romero-Díaz, C.A.: Similarity-based reasoning in qualified logic programming. In: Proceedings of the 10th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP 2008, pp. 185–194. ACM, New York (2008)Google Scholar
  4. 4.
    Caballero, R., Rodríguez-Artalejo, M., Romero-Díaz, C.A.: A transformation-based implementation for CLP with qualification and proximity. Theory Pract. Logic Program. 14(1), 1–63 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York (1980)zbMATHGoogle Scholar
  6. 6.
    Formato, F., Gerla, G., Sessa, M.I.: Similarity-based unification. Fundamenta Informaticae 41(4), 393–414 (2000)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Julián Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A fuzzy logic programming environment for managing similarity and truth degrees. In: Escobar, S. (ed.) Proceedings of XIV Jornadas sobre Programación y Lenguajes, PROLE 2014, Cádiz, Spain. EPTCS, vol. 173, pp. 71–86 (2015).
  8. 8.
    Julián, P., Moreno, G., Penabad, J.: On fuzzy unfolding. A multi-adjoint approach. Fuzzy Sets Syst. 154, 16–33 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Julián, P., Moreno, G., Penabad, J.: On the declarative semantics of multi-adjoint logic programs. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009, Part I. LNCS, vol. 5517, pp. 253–260. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Julián-Iranzo, P., Moreno, G., Vázquez, C.: Similarity-based strict equality in a fully integrated fuzzy logic language. In: Bassiliades, N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202, pp. 193–207. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  11. 11.
    Julián-Iranzo, P., Rubio-Manzano, C.: A declarative semantics for Bousi\(\sim \)Prolog. In: Proceedings of 11th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP 2009, Coimbra, Portugal, pp. 149–160. ACM (2009)Google Scholar
  12. 12.
    Julián-Iranzo, P., Rubio-Manzano, C.: An efficient fuzzy unification method and its implementation into the Bousi\(\sim \)Prolog system. In: Proceedings of the 2010 IEEE International Conference on Fuzzy Systems, Barcelona, Spain, pp. 1–8 (2010).
  13. 13.
    Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. J. Logic Program. 12, 335–367 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1987)CrossRefzbMATHGoogle Scholar
  15. 15.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Morcillo, P.J., Moreno, G., Penabad, J., Vázquez, C.: A practical management of fuzzy truth-degrees using FLOPER. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 20–34. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Moreno, G., Penabad, J., Vázquez, C.: Beyond multi-adjoint logic programming. Int. J. Comput. Math. 92(9), 1956–1975 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Moreno, G., Vázquez, C.: Fuzzy logic programming in action with FLOPER. J. Softw. Eng. Appl. 7, 237–298 (2014)CrossRefGoogle Scholar
  19. 19.
    Muñoz-Hernández, S., Ceruelo, V.P., Strass, H.: RFuzzy: Syntax, semantics and implementation details of a simple and expressive fuzzy tool over Prolog. Inform. Sci. 181(10), 1951–1970 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic. Chapman & Hall, Boca Ratón (2006)zbMATHGoogle Scholar
  21. 21.
    Rodríguez-Artalejo, M., Romero-Díaz, C.A.: Quantitative logic programming revisited. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 272–288. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Rubio-Manzano, C., Julián-Iranzo, P.: A fuzzy linguistic prolog and its applications. J. Intell. Fuzzy Syst. 26(3), 1503–1516 (2014)Google Scholar
  23. 23.
    Sessa, M.I.: Translations and similarity-based logic programming. Soft Comput. 5(2), 160–170 (2001).
  24. 24.
    Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution. Theoret. Comput. Sci. 275(1–2), 389–426 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    van Emden, M.H.: Quantitative deduction and its fixpoint theory. J. Logic Program. 3(1), 37–53 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pascual Julián-Iranzo
    • 1
  • Ginés Moreno
    • 2
  • Jaime Penabad
    • 3
  • Carlos Vázquez
    • 2
  1. 1.Department of Technologies and Information SystemsUCLMCiudad RealSpain
  2. 2.Department of Computing SystemsUCLMAlbaceteSpain
  3. 3.Department of MathematicsUCLMAlbaceteSpain

Personalised recommendations