Subject-Specific Estimation of Missing Cortical Thickness Maps in Developing Infant Brains

  • Yu Meng
  • Gang Li
  • Yaozong Gao
  • John H. Gilmore
  • Weili Lin
  • Dinggang ShenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9601)


To accurately chart the dynamic brain developmental trajectories in infants, many longitudinal neuroimaging studies prefer having a complete dataset. Unfortunately, missing data at certain time points are unavoidable in longitudinal datasets. To better use incomplete longitudinal data, we propose a novel method to estimate the subject-specific vertex-wise cortical thickness maps at missing time points, by using a customized regression forest, Dynamically-Assembled Regression Forest (DARF). DARF ensures spatial smoothness of the estimated cortical thickness maps and also the computational efficiency. The proposed method can fully exploit the available information from the subjects both with and without missing scans. Our method has been applied to estimate the missing cortical thickness maps in a longitudinal infant dataset, which includes 31 healthy subjects, with each having up to 5 scans. The experimental results indicate that our method can accurately estimate missing cortical thickness maps, with the average vertex-wise error less than 0.23 mm.


Missing data completion Longitudinal cortical thickness Infant brain development 


  1. 1.
    Gilmore, J.H., Shi, F., Woolson, S.L., Knickmeyer, R.C., Short, S.J., Lin, W., Zhu, H., Hamer, R.M., Styner, M., Shen, D.: Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb. Cortex 22, 2478–2485 (2012)CrossRefGoogle Scholar
  2. 2.
    Li, G., Nie, J., Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Mapping region-specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb. Cortex 23, 2724–2733 (2013)CrossRefGoogle Scholar
  3. 3.
    Li, G., Nie, J., Wang, L., Shi, F., Lyall, A.E., Lin, W., Gilmore, J.H., Shen, D.: Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb. Cortex 24, 1289–1300 (2014)CrossRefGoogle Scholar
  4. 4.
    Meng, Y., Li, G., Lin, W., Gilmore, J.H., Shen, D.: Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants. NeuroImage 100, 206–218 (2014)CrossRefGoogle Scholar
  5. 5.
    Nie, J., Li, G., Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Longitudinal development of cortical thickness, folding, and fiber density networks in the first 2 years of life. Hum. Brain Mapp. 35, 3726–3737 (2014)CrossRefGoogle Scholar
  6. 6.
    Awate, S.P., Yushkevich, P.A., Song, Z., Licht, D.J., Gee, J.C.: Cerebral cortical folding analysis with multivariate modeling and testing: studies on gender differences and neonatal development. Neuroimage 53, 450–459 (2010)CrossRefGoogle Scholar
  7. 7.
    Dubois, J., Benders, M., Borradori-Tolsa, C., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R., Sizonenko, S.V., Warfield, S.K., Mangin, J.F., Huppi, P.S.: Primary cortical folding in the human newborn: an early marker of later functional development. Brain: J. Neurol. 131, 2028–2041 (2008)CrossRefGoogle Scholar
  8. 8.
    Gilmore, J.H., Lin, W., Prastawa, M.W., Looney, C.B., Vetsa, Y.S., Knickmeyer, R.C., Evans, D.D., Smith, J.K., Hamer, R.M., Lieberman, J.A., Gerig, G.: Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. J. Neurosci. Official J. Soc. Neurosci. 27, 1255–1260 (2007)CrossRefGoogle Scholar
  9. 9.
    Schnack, H.G., van Haren, N.E., Brouwer, R.M., Evans, A., Durston, S., Boomsma, D.I., Kahn, R.S., Hulshoff Pol, H.E.: Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb. Cortex 25, 1608–1617 (2015)CrossRefGoogle Scholar
  10. 10.
    Lyall, A.E., Shi, F., Geng, X., Woolson, S., Li, G., Wang, L., Hamer, R.M., Shen, D., Gilmore, J.H.: Dynamic development of regional cortical thickness and surface area in early childhood. Cereb. Cortex 25, 2204–2212 (2015)CrossRefGoogle Scholar
  11. 11.
    Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 (2001)CrossRefGoogle Scholar
  12. 12.
    Tsiporkova, E., Boeva, V.: Two-pass imputation algorithm for missing value estimation in gene expression time series. J. Bioinf. Comput. Biol. 5, 1005–1022 (2007)CrossRefGoogle Scholar
  13. 13.
    Candès, E., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 208–220 (2013)CrossRefGoogle Scholar
  15. 15.
    Li, G., Nie, J., Wang, L., Shi, F., Gilmore, J.H., Lin, W., Shen, D.: Measuring the dynamic longitudinal cortex development in infants by reconstruction of temporally consistent cortical surfaces. Neuroimage 90, 266–279 (2014)CrossRefGoogle Scholar
  16. 16.
    Li, G., Wang, L., Shi, F., Lin, W., Shen, D.: Constructing 4D infant cortical surface atlases based on dynamic developmental trajectories of the cortex. Med. Image Comput. Comput. Assist. Interv. 17, 89–96 (2014)Google Scholar
  17. 17.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefzbMATHGoogle Scholar
  18. 18.
    Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 97, 11050–11055 (2000)CrossRefGoogle Scholar
  19. 19.
    Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B (Methodological) 58, 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: sparse shape composition. Med. Image Anal. 16, 265–277 (2012)CrossRefGoogle Scholar
  21. 21.
    Li, G., Wang, L., Shi, F., Lyall, A.E., Lin, W., Gilmore, J.H., Shen, D.: Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J. Neurosci. 34, 4228–4238 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yu Meng
    • 1
    • 2
  • Gang Li
    • 2
  • Yaozong Gao
    • 1
    • 2
  • John H. Gilmore
    • 2
  • Weili Lin
    • 2
  • Dinggang Shen
    • 2
    Email author
  1. 1.Department of Computer ScienceUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations