Sleep Pattern Discovery via Visualizing Cluster Dynamics of Sound Data

  • Hongle WuEmail author
  • Takafumi Kato
  • Tomomi Yamada
  • Masayuki Numao
  • Ken-ichi Fukui
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9799)


The quality of a good sleep is important for a healthy life. Recently, several sleep analysis products have emerged on the market; however, many of them require additional hardware or there is a lack of scientific evidence regarding their clinical efficacy. This paper proposes a novel method for discovering the sleep pattern via clustering of sound events. The sleep-related sound clips are extracted from sound recordings obtained when sleeping. Then, various self-organizing map algorithms are applied to the extracted sound data. We demonstrate the superiority of Kullback-Leibler divergence and obtain the cluster maps to visualize the distribution and changing patterns of sleep-related events during the sleep. Also, we perform a comparative interpretation between sleep stage sequences and obtained cluster maps. The proposed method requires few additional hardware, and its consistency with the medical evidence proves its reliability.


Sleep pattern Sound data Self-organizing map Pairwise F-measure Polysomnography 



This research is partially supported by the Center of Innovation Program from Japan Science and Technology Agency, JST, the Grant-in-Aid for Scientific Research (B)(#25293393) from the JSPS, and Challenge to Intractable Oral Diseases from Osaka University Graduate School of Dentistry.


  1. 1.
    Andras, P.: Kernel-kohonen networks. Int. J. Neural Syst. 12(02), 117–135 (2002)CrossRefGoogle Scholar
  2. 2.
    Behar, J., Roebuck, A., Domingos, J.S., Gederi, E., Clifford, G.D.: A review of current sleep screening applications for smartphones. Physiol. Meas. 34(7), R29–R46 (2013)CrossRefGoogle Scholar
  3. 3.
    Boulet, R., Jouve, B., Rossi, F., Villa, N.: Batch kernel SOM and related laplacian methods for social network analysis. Neurocomputing 71(7), 1257–1273 (2008)CrossRefGoogle Scholar
  4. 4.
    Choe, E.K., Kientz, J.A., Halko, S., Fonville, A., Sakaguchi, D., Watson, N.F.: Opportunities for computing to support healthy sleep behavior. In: CHI 2010 Extended Abstracts on Human Factors in Computing Systems, pp. 3661–3666. ACM (2010)Google Scholar
  5. 5.
    Chokroverty, S.: Sleep Disorders Medicine: Basic Science, Technical Considerations, and Clinical Aspects. Butterworth-Heinemann, Boston (2013)Google Scholar
  6. 6.
    Doi, Y.: Prevalence and health impacts of sleep disorders in Japan. J. Natl. Inst. Public Health 61, 3–10 (2012)Google Scholar
  7. 7.
    Fairbanks, D.N., Mickelson, S.A., Woodson, B.T.: Snoring and Obstructive Sleep Apnea. Lippincott Williams & Wilkins, Philadelphia (2003)Google Scholar
  8. 8.
    Feinberg, I.: Changes in sleep cycle patterns with age. J. Psychiatr. Res. 10(3), 283–306 (1974)CrossRefGoogle Scholar
  9. 9.
    Fukui, K., Akasaki, S., Sato, K., Mizusaki, J., Moriyama, K., Kurihara, S., Numao, M.: Visualization of damage progress in solid oxide fuel cells. J. Environ. Eng. 6(3), 499–511 (2011)CrossRefGoogle Scholar
  10. 10.
    Fukui, K., Numao, M.: Neighborhood-based smoothing of external cluster validity measures. In: Tan, P.-N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD 2012, Part I. LNCS, vol. 7301, pp. 354–365. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Fukui, K., Saito, K., Kimura, M., Numao, M.: Sequence-based SOM: visualizing transition of dynamic clusters. In: Proceedings of IEEE 8th International Conference on Computer and Information Technology (CIT 2008), pp. 47–52. IEEE (2008)Google Scholar
  12. 12.
    Fukumura, H., Okada, S., Makikawa, M.: Estimation of sleep stage using SVM from noncontact measurement of forehead and nasal skin temperature. BME 50(1), 131–137 (2012)Google Scholar
  13. 13.
    Gu, W., Yang, Z., Shangguan, L., Sun, W., Jin, K., Liu, Y.: Intelligent sleep stage mining service with smartphones. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 649–660. ACM (2014)Google Scholar
  14. 14.
    Hao, T., Xing, G., Zhou, G.: iSleep: unobtrusive sleep quality monitoring using smartphones. In: Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, SenSys 2013, pp. 4:1–4:14. ACM (2013)Google Scholar
  15. 15.
    Hobson, J.A., Pace-Schott, E.F., Stickgold, R.: Dreaming and the brain: toward a cognitive neuroscience of conscious states. Behav. Brain Sci. 23(06), 793–842 (2000)CrossRefGoogle Scholar
  16. 16.
    Kato, T., Masuda, Y., Yoshida, A., Morimoto, T.: Masseter EMG activity during sleep and sleep bruxism. Archives italiennes de biologie 149(4), 478–491 (2011)Google Scholar
  17. 17.
    Kleinberg, J.: Bursty and hierarchical structure in streams. Data Min. Knowl. Disc. 7(4), 373–397 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kohonen, T.: Self-Organisation Maps. Springer, New York (1995)CrossRefGoogle Scholar
  19. 19.
    Kohonen, T., Kaski, S., Lagus, K., Salojärvi, J., Honkela, J., Paatero, V., Saarela, A.: Self organization of a massive document collection. IEEE Trans. Neural Netw. 11(3), 574–585 (2000)CrossRefGoogle Scholar
  20. 20.
    Lavigne, G., Rompre, P., Montplaisir, J.: Sleep bruxism: validity of clinical research diagnostic criteria in a controlled polysomnographic study. J. Dent. Res. 75(1), 546–552 (1996)CrossRefGoogle Scholar
  21. 21.
    Metsis, V., Kosmopoulos, D., Athitsos, V., Makedon, F.: Non-invasive analysis of sleep patterns via multimodal sensor input. Pers. Ubiquit. Comput. 18(1), 19–26 (2014)CrossRefGoogle Scholar
  22. 22.
    Noh, T., Serizawa, Y., Kimura, T., Yamazaki, K., Hayasaka, Y., Itoh, T., Izumi, S., Sasaki, T.: The assessment of sleep stage utilizing body pressure fluctuation measured by water mat sensors. J. Adv. Sci. 21(1 and 2), 27–30 (2009)CrossRefGoogle Scholar
  23. 23.
    Silber, M.H., Ancoli-Israel, S., Bonnet, M.H., Chokroverty, S., Grigg-Damberger, M.M., Hirshkowitz, M., Kapen, S., Keenan, S.A., Kryger, M.H., Penzel, T., et al.: The visual scoring of sleep in adults. J. Clin. Sleep Med. 3(2), 121–131 (2007)Google Scholar
  24. 24.
    Simula, O., Kangas, J.: Process monitoring and visualization using self-organizing maps. Neural Netw. Chem. Eng. 6, 371–384 (1995)Google Scholar
  25. 25.
    Spruyt, K., Molfese, D.L., Gozal, D.: Sleep duration, sleep regularity, body weight, and metabolic homeostasis in school-aged children. Pediatrics 127(2), e345–e352 (2011)CrossRefGoogle Scholar
  26. 26.
    Xu, R., Wunsch, D.C.: Cluster validity. Clustering, pp. 263–278 (2008)Google Scholar
  27. 27.
    Yamada, H., Sato, Y., Ooshima, N., Hirai, H., Suzuki, T., Minami, S.: Heterogeneous system integration pseudo-SoC technology for smart-health-care intelligent life monitor engine and eco-system (silmee). In: Proceedings of Electronic Components and Technology Conference (ECTC), pp. 1729–1734. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hongle Wu
    • 1
    Email author
  • Takafumi Kato
    • 2
  • Tomomi Yamada
    • 2
  • Masayuki Numao
    • 1
  • Ken-ichi Fukui
    • 1
  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversitySuitaJapan
  2. 2.Graduate School of DentistryOsaka UniversitySuitaJapan

Personalised recommendations