Intelligent Systems in Modeling Phase of Information Mining Development Process

  • Sebastian Martins
  • Patricia Pesado
  • Ramón García-Martínez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9799)


The Information Mining Engineering (IME) understands in processes, methodologies, tasks and techniques used to: organize, control and manage the task of finding knowledge patterns in information bases. A relevant task is selecting the data mining algorithms to use, which it is left to the expertise of the information mining engineer, developing it in a non-structured way. In this paper we propose an Information Mining Project Development Process Model (D-MoProPEI) which provides an integrated view in the selection of Information Mining Processes Based on Intelligent Systems (IMPbIS) within the Modeling Phase of the proposed Process Model through a Systematic Deriving Methodology.


  1. 1.
    Thomsen, E.: BI’s promised land. Intell. Enterp. 6(4), 21–25 (2003)Google Scholar
  2. 2.
    Negash, S., Gray, P.: Business intelligence. In: Bursteiny, F., Holsapple, C. (eds.) Handbook on Decision Support Systems 2. IHIS, pp. 175–193. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Langseth, J., Vivatrat, N.: Why proactive business intelligence is a hallmark of the real-time enterprise: outward bound. Intell. Enterp. 5(18), 34–41 (2003)Google Scholar
  4. 4.
    Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.: Business process intelligence. Comput. Ind. 53(3), 321–343 (2004)CrossRefGoogle Scholar
  5. 5.
    Michalski, R., Bratko, I., Kubat, M.: Machine Learning and Data Mining, Methods and Applications. Wiley, New York (1998)Google Scholar
  6. 6.
    Michalski, R.: A theory and methodology of inductive learning. Artif. Intell. 20, 111–161 (1983)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Quinlan, J.: Learning logic definitions from relations. Mach. Learn. 5, 239–266 (1990)Google Scholar
  8. 8.
    Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)CrossRefMATHGoogle Scholar
  9. 9.
    Heckerman, D., Chickering, M., Geiger, D.: Learning bayesian networks, the combination of knowledge and statistical data. Mach. Learn. 20, 197–243 (1995)MATHGoogle Scholar
  10. 10.
    García-Martínez, R., Britos, P., Rodríguez, D.: Information Mining Processes Based on Intelligent Systems. In: Ali, M., Bosse, T., Hindriks, K.V., Hoogendoorn, M., Jonker, C.M., Treur, Jan (eds.) IEA/AIE 2013. LNCS, vol. 7906, pp. 402–410. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    García-Martínez, R., Britos, P., Pesado, P., Bertone, R., Pollo-Cattaneo, F., Rodríguez, D., Pytel, P., Vanrell. J.: Towards an information mining engineering. In: Software Engineering, Methods, Modeling and Teaching, pp. 83–99. Medellín University Press. ISBN: 978-958-8692-32-6 (2011)Google Scholar
  12. 12.
    Martins, S., Pesado, P., García-Martínez, R. (2014). Process Mining Proposal for Information Mining Engineering: MoProPEI (in spanish). Latin-American Journal of Software Engineering, 2(5): 313–332. ISSN: 2314-2642
  13. 13.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17(3), 37–54 (1996)Google Scholar
  14. 14.
    Chapman, P., Clinton, J., Keber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: CRISP-DM 1.0 Step by step BI guide. Edited by SPSS (2000)Google Scholar
  15. 15.
    Marbán, Ó., Mariscal, G., Menasalvas, E., Segovia, J.: An engineering approach to data mining projects. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 578–588. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Britos, P., Jiménez Rey, E., García-Martínez, E.: Work in progress: programming misunderstandings discovering process based on intelligent data mining tools. In: Proceedings 38th ASEE/IEEE Frontiers in Education Conference (2008)Google Scholar
  17. 17.
    Kaufmann, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)CrossRefGoogle Scholar
  18. 18.
    Grabmeier, J., Rudolph, A.: Techniques of Cluster Algorithms in Data Mining. Data Min. Knowl. Disc. 6(4), 303–360 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ferrero, P., Britos, P., García-Martínez, R.: Detection of Breast Lesions in Medical Digital Imaging Using Neural Networks. In: Debenham, J. (ed.) IEA/AIE 2008. IFIP, vol. 218, pp. 1–10. Springer, Boston (2008)CrossRefGoogle Scholar
  20. 20.
    Britos, P., Cataldi, Z., Sierra, E., García-Martínez, R.: Pedagogical protocols selection automatic assistance. In: Nguyen, N.T., Borzemski, L., Grzech, A., Ali, M. (eds.) IEA/AIE 2008. LNCS (LNAI), vol. 5027, pp. 331–336. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Britos, P., Grosser, H., Rodríguez, D., García-Martínez, R.: Detecting unusual changes of users consumption. In: Bramer, M. (ed.) IEA/AIE 2008. IFIP, vol. 276, pp. 297–306. Springer, Boston (2008)CrossRefGoogle Scholar
  22. 22.
    Britos, P., Felgaer, P., García-Martínez, R.: Bayesian networks optimization based on induction learning techniques. In: Bramer, M. (ed.) IEA/AIE 2008. IFIP, vol. 276, pp. 439–443. Springer, Boston (2008)CrossRefGoogle Scholar
  23. 23.
    Britos, P., Abasolo, M., García-Martínez, R., Perales, F.: Identification of MPEG-4 patterns in human faces using data mining techniques. In: Proceedings 13th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision 2005, pp. 9–10 (2005)Google Scholar
  24. 24.
    Cogliati, M., Britos, P., García-Martínez, R.: Patterns in temporal series of meteorological variables using SOM & TDIDT. In: Bramer, M. (ed.) AITP. IFIP, vol. 217, pp. 305–314. Springer, Boston (2006)CrossRefGoogle Scholar
  25. 25.
    Martins, S., Rodríguez, D., García-Martínez, R.: Deriving processes of information mining based on semantic nets and frames. In: Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F. (eds.) IEA/AIE 2014, Part II. LNCS, vol. 8482, pp. 150–159. Springer, Heidelberg (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sebastian Martins
    • 1
    • 3
  • Patricia Pesado
    • 2
  • Ramón García-Martínez
    • 3
  1. 1.PhD Program on Computer ScienceNational University of La PlataLa PlataArgentina
  2. 2.III-LIDI. Computer Sc SchoolNational University of La Plata – CIC Bs asLa PlataArgentina
  3. 3.Information Systems Research GroupNational University of LanusLanúsArgentina

Personalised recommendations