Advertisement

A Comprehensive Analysis: Automated Ovarian Tissue Detection Using Type P63 Pathology Color Images

  • T. M. Shahriar Sazzad
  • L. J. Armstrong
  • A. K. Tripathy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9729)

Abstract

Manual microscopic ovarian reproductive tissue analysis is a general routine examination process in the laboratory. This process requires longer processing time and prone to errors. Among all existing scanning devices ultrasound is commonly used but not optimal as it process grayscale images which do not provide satisfactory results. Computer based approaches could be a viable option as it can minimize the labor cost, effort and time. Additionally smaller tissues can be easily analyzed. In this paper a comprehensive analysis has been carried out and a new modified approach has been presented using type P63 histopathology ovarian tissues color images with different magnifications. Comparison of various existing automated approaches with manual identification results by experts indicates excellent performance of the proposed automated approach.

Keywords

Histopathology Color digitized microscopic image Image artifacts Mean shift Region fusion Cluster Ovarian reproductive tissues 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kiruthika, V., Ramya, M.: Automatic segmentation of ovarian follicle using K-means clustering. In: 2014 Fifth International Conference on Signal and Image Processing (ICSIP), pp. 137–141 (2014)Google Scholar
  2. 2.
    Skodras, A., Giannarou, S., Fenwick, M., Franks, S., Stark, J., Hardy, K.: Object recognition in the ovary: quantification of oocytes from microscopic images. In: 2009 16th International Conference on Digital Signal Processing, pp. 1–6 (2009)Google Scholar
  3. 3.
    Kelsey, T.W., Caserta, B., Castillo, L., Wallace, W.H.B., Gonzálvez, F.C.: Proliferating Cell Nuclear Antigen (PCNA) allows the automatic identification of follicles in microscopic images of human ovarian tissue. arXiv preprint arXiv:1008.3798 (2010)
  4. 4.
    Muskhelishvili, L., Wingard, S.K., Latendresse, J.R.: Proliferating cell nuclear antigen—a marker for ovarian follicle counts. Toxicologic Pathology 33, 365–368 (2005)CrossRefGoogle Scholar
  5. 5.
    Lamprecht, M.R., Sabatini, D.M., Carpenter, A.E.: CellProfiler™: free, versatile software for automated biological image analysis. Biotechniques 42, 71 (2007)CrossRefGoogle Scholar
  6. 6.
    Chughtai, K., Heeren, R.M.: Mass spectrometric imaging for biomedical tissue analysis. Chemical Reviews 110, 3237–3277 (2010)CrossRefGoogle Scholar
  7. 7.
    Soucek, P., Gut, I.: Cytochromes P-450 in rats: structures, functions, properties and relevant human forms. Xenobiotica 22, 83–103 (1992)CrossRefGoogle Scholar
  8. 8.
    Picut, C.A., Swanson, C.L., Scully, K.L., Roseman, V.C., Parker, R.F., Remick, A.K.: Ovarian follicle counts using proliferating cell nuclear antigen (PCNA) and semi-automated image analysis in rats. Toxicologic Pathology 36, 674–679 (2008)CrossRefGoogle Scholar
  9. 9.
    Sazzad, T., Armstrong, L., Tripathy, A.: An automated detection process to detect ovarian tissues using type P63 digitized color images. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 278–285 (2015)Google Scholar
  10. 10.
    Magee, D., Treanor, D., Crellin, D., Shires, M., Smith, K., Mohee, K., et al.: Colour normalisation in digital histopathology images (2009)Google Scholar
  11. 11.
    Bolon, B., Bucci, T.J., Warbritton, A.R., Chen, J.J., Mattison, D.R., Heindel, J.J.: Differential follicle counts as a screen for chemically induced ovarian toxicity in mice: results from continuous breeding bioassays. Toxicological Sciences 39, 1–10 (1997)CrossRefGoogle Scholar
  12. 12.
    Bucci, T.J., Bolon, B., Warbritton, A.R., Chen, J.J., Heindel, J.J.: Influence of sampling on the reproducibility of ovarian follicle counts in mouse toxicity studies. Reproductive Toxicology 11, 689–696 (1997)CrossRefGoogle Scholar
  13. 13.
    Sazzad, T., Armstrong, L., Tripathy, A.: An automated approach to detect human ovarian tissues using type P63 counter stained histopathology digitized color images. In: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 25–28 (2016)Google Scholar
  14. 14.
    Eramian, M.G., Adams, G.P., Pierson, R.A.: Enhancing ultrasound texture differences for developing an in vivo’virtual histology’approach to bovine ovarian imaging. Reproduction, Fertility and Development 19, 910–924 (2007)CrossRefGoogle Scholar
  15. 15.
    Li, Q., Nishikawa, R.M.: Computer-Aided Detection and Diagnosis in Medical Imaging. Taylor & Francis (2015)Google Scholar
  16. 16.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 603–619 (2002)CrossRefGoogle Scholar
  17. 17.
    Nock, R., Nielsen, F.: Statistical region merging. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1452–1458 (2004)CrossRefGoogle Scholar
  18. 18.
    Wu, G., Zhao, X., Luo, S., Shi, H.: Histological image segmentation using fast mean shift clustering method. Biomedical Engineering Online 14, 24 (2015)CrossRefGoogle Scholar
  19. 19.
    Cheng, H.-D., Jiang, X., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognition 34, 2259–2281 (2001)CrossRefMATHGoogle Scholar
  20. 20.
    Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory 21, 32–40 (1975)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: A review. IEEE Reviews in Biomedical Engineering 2, 147–171 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • T. M. Shahriar Sazzad
    • 1
  • L. J. Armstrong
    • 1
  • A. K. Tripathy
    • 1
    • 2
  1. 1.Edith Cowan UniversityJoondalupAustralia
  2. 2.Don Bosco Institute of TechnologyMumbaiIndia

Personalised recommendations