Advertisement

Fracture Mechanics Methods to Assess the Lifetime of Thermoplastic Pipes

  • F. Arbeiter
  • G. Pinter
  • R. W. Lang
  • A. Frank
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 247)

Abstract

When performing lifetime estimations using extrapolation concepts, it is vital to estimate the uncertainties which always accompany accelerated testing methods. Uncertainties may arise from deviating parameters such as changes in environmental conditions, temperature, different loading ratios, chemicals such as stress cracking agents, etc. Only when these influences are known it is justifiable to go into lifetime calculations. Own studies showed, that fracture mechanics extrapolation concepts for accelerated prediction of PE pressure pipes using short-time fatigue tests provide valid results when compared to pre-notched internal pipe pressure tests. The use of a cracked round bar (CRB) specimen for linear elastic fracture mechanic (LEFM) tests improves the results compared to classical compact tension (CT) specimens, which tend to overestimate lifetimes. This can mainly be attributed to bigger plastic zone sizes which restrict slow crack growth (SCG) in CT specimens. Another advantage is the similarity of constraint and K I-development between a pipe and CRB specimens. Summarising, the extrapolation concept using short-term fatigue tests on CRB specimens provides a valuable and valid tool to perform lifetime estimations for pipe systems made from high-density polyethylene (PE-HD) pipe materials. Further steps in the development of the approach using cyclic CRB Tests are currently under evaluation. For example, the implementation of influences due to media is an important addition, to be able to cover the area of media and crude oil transportation. The impact of crack growth initiation is also a topic which has yet to be addressed. So far it has often been neglected in lifetime estimations due to complex testing procedures. Also the use of the cyclic CRB Test for different polymeric pipe materials is currently examined. Seeing that only about a third of all thermoplastic pipes is produced from PE-HD material this is a logical next step. Besides lifetime estimation, the use of the cyclic CRB Tests at R = 0.1 is also discussed for ISO-standardisation for material quality control. Good correlations with established methods support its claim as a precise and fast ranking tool for PE-HD pipe grades.

References

  1. 1.
    EN ISO 9080 (2012): Plastics piping and ducting systems—Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolationGoogle Scholar
  2. 2.
    ASTM D 2837 (2013): Standard test method for obtaining hydrostatic design basis for thermoplastic pipe materials or pressure design basis for thermoplastic pipe productsGoogle Scholar
  3. 3.
    Richard, K., Gaube, E., Diedrich, G.: Trinkwasserrohre aus Niederdruckpolyäthylen. Kunststoffe 49, 516–525 (1959)Google Scholar
  4. 4.
    Gaube, E., Gebler, H., Müller, W., Gondro, C.: Zeitstandfestigkeit und Alterung von Rohren aus HDPE. Kunststoffe 75, 412–415 (1985)Google Scholar
  5. 5.
    Lustiger, A.: Environmental stress cracking: the phenomenon and its utility. In: Browstow, W., Corneliussen, R.D. (eds.) Failure of Plastics, pp. 305–329. Carl Hanser, Munich (1986)Google Scholar
  6. 6.
    Kausch, H.H.: Polymer Fracture. Springer, Berlin (1987)Google Scholar
  7. 7.
    Ifwarson, M., Tränkner, T.: Gebrauchsdauer von Polyethylenrohren unter Temperatur und Druckbelastung. Kunststoffe 79 (198) 525–529Google Scholar
  8. 8.
    Lang, R.W.: Polymerphysikalische Ansätze zur Beschreibung des Deformations- und Versagensverhaltens von PE-Rohren. 3R Int. 36, 40–44 (1997)Google Scholar
  9. 9.
    Lang, R.W., Pinter, G., Balika, W.: Ein neues Konzept zur Nachweisführung für Nutzungsdauer und Sicherheit von PE-Druckrohren bei beliebiger Einbausituation. 3R Int. 44, 32–41 (2005)Google Scholar
  10. 10.
    Krishnaswamy, R.K.: Analysis of ductile and brittle failures from creep rupture testing of high-density polyethylene (HDPE) pipes. Polymer 46, 11664–11672 (2005)CrossRefGoogle Scholar
  11. 11.
    Barker, M.B., Bowman, J., Bevis, M.: The performance and causes of failure of polyethylene pipes subjected to constant and fluctuating internal pressure loadings. J. Mater. Sci. 18, 1095–1118 (1983)CrossRefGoogle Scholar
  12. 12.
    Stern, A.: Fracture Mechanical Characterization of the Long-Term Behavior of Polymers Under Static Loads. Ph.D. thesis, Montan University Leoben, Leoben (1995)Google Scholar
  13. 13.
    Pinter, G.: Rißwachstumsverhalten von PE-HD unter statischer Belastung. Ph.D. thesis, Montan University Leoben, Leoben (1999)Google Scholar
  14. 14.
    Böhm, L.L., Enderle, H.F., Fleissner, M.: High-density polyethylene pipe resins. Adv. Mater. 4, 234–238 (1992)CrossRefGoogle Scholar
  15. 15.
    Brown, N., Lu, X., Huang, Y.: The fundamental material parameters that govern slow crack growth in linear polyethylene. Plast. Rubber Compos. Process. Appl. 17, 255–258 (1992)Google Scholar
  16. 16.
    Egan, B.J., Delatycki, O.: The morphology, chain structure and fracture behaviour of high-density polyethylene. Part I: Fracture at a constant rate of deflection. J. Mater. Sci. 30, 3307–3318 (1995)CrossRefGoogle Scholar
  17. 17.
    Egan, B.J., Delatycki, O.: The morphology, chain structure and fracture behaviour of high-density polyethylene. Part II: Static fatigue fracture testing. J. Mater. Sci. 30, 3351–3357 (1995)CrossRefGoogle Scholar
  18. 18.
    Pinter, G., Lang, R.W.: Creep crack growth in high density polyethylene. In: Moore, D. R. (ed.): The Application of Fracture Mechanics to Polymers, Adhesives and Composites. ESIS Publication 33, Elsevier Science, Oxford (2004), pp. 47–54Google Scholar
  19. 19.
    Dörner, G.F.: Stabilisatoreinflüsse auf das Alterungs- und Zeitstandverhalten von Rohren aus PE-MD. Ph.D. thesis, Montan University Leoben, Leoben (1994)Google Scholar
  20. 20.
    Choi, B., Chudnovsky, A., Paradkar, R., Michie, W., Zhou, Z., Cham, P.: Experimental and theoretical investigation of stress corrosion crack (SCC) growth of polyethylene pipes. Polym. Degrad. Stab. 94, 859–867 (2009)CrossRefGoogle Scholar
  21. 21.
    Dugdale, D.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)CrossRefGoogle Scholar
  22. 22.
    Barenblatt, G.J.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)CrossRefGoogle Scholar
  23. 23.
    Friedrich, K.: Crazes and shear bands in semi-crystalline thermoplastics. In: Kausch, H.H. (ed.) Crazing in Polymers. Advances in Polymer Science 52–53, pp. 225–274. Springer, Berlin (1983)Google Scholar
  24. 24.
    Lang, R.W.: Applicability of linear elastic fracture mechanics to fatigue in polymers and short-fiber composites. Ph.D. thesis, Lehigh University, Bethlehem (1984)Google Scholar
  25. 25.
    Kausch, H.H., Gensler, R., Grein, C., Plummer, C.J.G., Scaramuzzino, P.: Crazing in semicrystalline thermoplastics. J. Macromol. Sci., Part B Phys. 38, 803–815 (1999)CrossRefGoogle Scholar
  26. 26.
    Kausch, H.H. (ed.) Crazing in Polymers, vols. 1 and 2. Advances in Polymer Science 52/53 and 91/92. Springer, Berlin (1983, 1990)Google Scholar
  27. 27.
    Lustiger, A., Ishikawa, N.: An analytical technique for measuring relative tie-molecule concentration in polyethylene. J. Polym. Sci., Part B: Polym. Phys. 29, 1047–1055 (1991)CrossRefGoogle Scholar
  28. 28.
    Pinter, G., Lang, R.W.: Effect of stabilization on creep crack growth in high-density polyethylene. J. Appl. Polym. Sci. 90, 3191–3207 (2003)CrossRefGoogle Scholar
  29. 29.
    Haager, M., Pinter, G., Lang, R.W.: Estimation of slow crack growth behavior in polyethylene after stepwise isothermal crystallization. Macromol. Symp. 217, 383–390 (2004)CrossRefGoogle Scholar
  30. 30.
    Frank, A., Pinter, G.: Evaluation of the applicability of the cracked round bar test as standardized PE-pipe ranking tool. Polym. Testing 33, 161–171 (2014)CrossRefGoogle Scholar
  31. 31.
    van der Stok, E., Scholten, F.: Strain hardening tests on PE pipe materials. In: Proceedings of Plastics Pipes XVI (Barcelona, 24.–26.09.2012). Barcelona (2012), 10 pGoogle Scholar
  32. 32.
    Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)Google Scholar
  33. 33.
    Paris, P., Erdogan, F.: A critical analysis of crack propagation laws. J. Basic Eng. 85, 528–534 (1963)CrossRefGoogle Scholar
  34. 34.
    Murakami, Y. (ed.): Stress Intensity Factors Handbook, 2nd edn. Pergamon Press, Oxford (1990)Google Scholar
  35. 35.
    Dixon, J.R., Pook, L.P.: Stress intensity factors calculated generally by the finite element technique. Nature 224, 166–167 (1969)CrossRefGoogle Scholar
  36. 36.
    Yamamoto, Y., Tokuda, N.: Determination of stress intensity factors in cracked plates by the finite element method. Int. J. Numer. Meth. Eng. 6, 427–439 (1973)CrossRefGoogle Scholar
  37. 37.
    Lang, R.W., Stern, A., Dörner, G.F.: Applicability and limitations of current lifetime prediction models for thermoplastics pipes under internal pressure. Angew. Makromol. Chem. 247, 131–145 (1997)CrossRefGoogle Scholar
  38. 38.
    Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications, 3rd edn. CRC Press, Taylor & Francis, Boca Raton (2005)Google Scholar
  39. 39.
    Krishnamachari, S.I.: Applied Stress Analysis of Plastics: A Mechanical Engineering Approach. Van Nostrand Reinhold, New York (1993)CrossRefGoogle Scholar
  40. 40.
    Frank, A.: Fracture mechanics based lifetime assessment and long-term failure behavior of polyethylene pressure pipes. Ph.D. thesis, Montan University Leoben, Leoben (2010)Google Scholar
  41. 41.
    Hutař, P., Ševčík, M., Náhlík, L., Mitev, I., Frank, A., Pinter, G.: Numerical simulation of the failure behavior of PE pressure pipes with additional loads. In: Proceedings of 67th Annual Technical Conference of the Society of Plastics Engineers 2009 (ANTEC 2009, Chicago, 22.–24.06.2009). Society of Plastics Engineers, Brookfield (2009), 2163–2168Google Scholar
  42. 42.
    Ševčík, M., Hutař, P., Zouhar, M., Náhlík, L.: Numerical estimation of the fatigue crack front shape for a specimen with finite thickness. Int. J. Fatigue 39, 75–80 (2012)CrossRefGoogle Scholar
  43. 43.
    Portch, D.J.: An investigation into the change of shape of fatigue cracks initiated at surface flaws. Report RD/B/N4645, Central Electricity Generating Board, Research Division, Berkeley Nuclear Laboratories, Berkeley (1979)Google Scholar
  44. 44.
    Hutař, P., Ševčík, M., Zouhar, M., Náhlík, L., Kučera, J.: The effect of residual stresses on crack shape in polymer pipes. In: Carpinteri, A. (ed.) Proceedings of the 4th International Conference on Crack Paths (CP 2012, Gaeta, 19.–21.09.2012). Gaeta (2012), pp. 489–496Google Scholar
  45. 45.
    Broek, D.: Elementary Engineering Fracture Mechanics, 3rd edn. Martinus Nijhoff, The Hague Boston London (1982)CrossRefGoogle Scholar
  46. 46.
    Broek, D.: The Practical Use of Fracture Mechanics, 2nd edn. Kluwer, Dordrecht Boston London (1989)CrossRefGoogle Scholar
  47. 47.
    Hertzberg, R.W.: Deformation and Fracture Mechanics of Engineering Materials, 4th edn. Wiley, New York (1996)Google Scholar
  48. 48.
    Parsons, M., Stepanov, E.V., Hiltner, A., Baer, E.: Correlation of fatigue and creep slow crack growth in a medium density polyethylene pipe material. J. Mater. Sci. 35, 2659–2674 (2000)CrossRefGoogle Scholar
  49. 49.
    Favier, V., Giroud, T., Strijko, E., Hiver, J., G’Sell, C., Hellinckx, S., Goldberg, A.: Slow crack propagation in polyethylene under fatigue at controlled stress intensity. Polymer 43, 1375–1382 (2002)CrossRefGoogle Scholar
  50. 50.
    Pinter, G., Haager, M., Balika, W., Lang, R.W.: Fatigue crack growth in PE-HD pipe grades. Plast., Rubber Compos. 34, 25–33 (2005)CrossRefGoogle Scholar
  51. 51.
    Balika, W., Pinter, G., Lang, R.W.: Systematic investigations of fatigue crack growth behavior of a PE-HD pipe grade in through-thickness direction. J. Appl. Polym. Sci. 103, 1745–1758 (2007)CrossRefGoogle Scholar
  52. 52.
    Majer, Z., Hutař, P., Frank, A., Ševčík, M., Zouhar, M., Pinter, G., Náhlík, L.: Point load effect on the buried polyolefin pipes lifetime. Polym. Eng. Sci. 56, 79–86 (2016)CrossRefGoogle Scholar
  53. 53.
    Bhattacharya, S.K., Brown, N.: Micromechanisms of crack initiation in thin films and thick sections of polyethylene. J. Mater. Sci. 19, 2519–2532 (1984)CrossRefGoogle Scholar
  54. 54.
    O’Connell, P.A., Bonner, M.J., Duckett, R.A., Ward, I.M.: The relationship between slow crack propagation and tensile creep behaviour in polyethylene. Polymer 36, 2355–2362 (1995)CrossRefGoogle Scholar
  55. 55.
    Kausch, H.H.: Energy considerations for crack growth in thermoplastics. Kunststoffe 66, 538–544 (1976)Google Scholar
  56. 56.
    Balika, W.: Rissausbreitung in Kunststoff-Rohrwerkstoffen unter statischer und zyklischer Belastung: Vergleich kommerzieller Rohrwerkstoffklassen und Einfluss der Werk-stoff-mikro struktur. Ph.D. thesis, Montan University Leoben, Leoben (2003)Google Scholar
  57. 57.
    Chan, M.K.V., Williams, J.G.: Slow stable crack growth in high density polyethylenes. Polymer 24, 234–244 (1983)CrossRefGoogle Scholar
  58. 58.
    Hamouda, H.B.H., Simoes-betbeder, M., Grillon, F., Blouet, P., Billon, N., Piques, R.: Creep damage mechanisms in polyethylene gas pipes. Polymer 54, 25–37 (2001)Google Scholar
  59. 59.
    Choi, B., Balika, W., Chudnovsky, A., Pinter, G., Lang, R.W.: The use of crack layer theory to predict the lifetime of the fatigue crack growth of high density polyethylene. Polym. Eng. Sci. 49, 1421–1428 (2009)CrossRefGoogle Scholar
  60. 60.
    Parsons, M., Stepanov, E.V., Hiltner, A., Baer, E.: Correlation of stepwise fatigue and creep slow crack growth in high density polyethylene. J. Mater. Sci. 34, 3315–3326 (1999)CrossRefGoogle Scholar
  61. 61.
    Shah, A., Stepanov, E.V., Capaccio, G., Hiltner, A., Baer, E.: Stepwise fatigue crack propagation in polyethylene resins of different molecular structure. J. Polym. Sci., Part B: Polym. Phys. 36, 2355–2369 (1998)CrossRefGoogle Scholar
  62. 62.
    Parsons, M., Stepanov, E.V., Hiltner, A., Baer, E.: Effect of strain rate on stepwise fatigue and creep slow crack growth in high density polyethylene. J. Mater. Sci. 35, 1857–1866 (2000)CrossRefGoogle Scholar
  63. 63.
    Shah, A., Stepanov, E.V., Hiltner, A., Baer, E., Klein, M.: Correlation of fatigue crack propagation in polyethylene pipe specimens of different geometries. Int. J. Fract. 84, 159–173 (1997)CrossRefGoogle Scholar
  64. 64.
    Shah, A., Stepanov, E.V., Klein, M., Hiltner, A., Baer, E.: Study of polyethylene pipe resins by a fatigue test that simulates crack propagation in a real pipe. J Mater. Sci. 33, 3313–3319 (1998)CrossRefGoogle Scholar
  65. 65.
    Hertzberg, R.W., Manson, J.A.: Fatigue of Engineering Plastics. Academic Press, New York (1980)Google Scholar
  66. 66.
    Irwin, G.R.: Plastic zone near a crack and fracture toughness. In: Proceedings of 7th Sagamore Ordnance Materials Research Conference (Raquette Lake, 16.–19.08.1960). Syracuse University, Syracuse (1960), IV-63Google Scholar
  67. 67.
    Brown, N.: A fundamental theory for slow crack growth in polyethylene. Polymer 36, 543–548 (1995)CrossRefGoogle Scholar
  68. 68.
    Braga, M., Rink, M., Pavan, A.: Variations in the fracture behaviour of polyethylene pipe materials induced by thermal treatments. Polymer 32, 3152–3161 (1991)CrossRefGoogle Scholar
  69. 69.
    Brown, N., Lu, X., Huang, Y., Qian, R.: Slow crack growth in polyethylene—a review. Makromol. Chem. Macromol. Symp. 41, 55–67 (1991)CrossRefGoogle Scholar
  70. 70.
    Haager, M., Zhou, W., Pinter, G., Chudnovsky, A.: Studies of creep and fatigue crack growth in HD-PE pipe materials. In: Proceedings of 64th Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2005, Boston, 01.–05.05.2005). Society of Plastics Engineers, Bethel (2005), 3538–3542Google Scholar
  71. 71.
    Reynolds, P.T., Lawrence, C.C.: Mechanisms of deformation in the fatigue of polyethylene pipe. J. Mater. Sci. 28, 2277–2282 (1993)CrossRefGoogle Scholar
  72. 72.
    Haager, M.: Bruchmechanische Methoden zur beschleunigten Charakterisierung des langsamen Risswachstums von Polyethylen-Rohrwerkstoffen. Ph.D. thesis, Montan University Leoben, Leoben (2006)Google Scholar
  73. 73.
    Lang, R.W., Balika, W., Pinter, G.: Applicability of linear elastic fracture mechanics to fatigue in amorphous and semi-crystalline polymers. In: Moore, D.R. (ed.) The Application of Fracture Mechanics to Polymers, Adhesives and Composites. ESIS Publication 33, Elsevier, Amsterdam (2004), pp. 83–92Google Scholar
  74. 74.
    Pinter, G.: Slow Crack Growth in PE-HD under Static and Cyclic Loads. Habilitation thesis, Montan University Leoben, Leoben (2008)Google Scholar
  75. 75.
    Brown, N., Donofrio, J., Lu, X.: The transition between ductile and slow-crack-growth failure in polyethylene. Polymer 28, 1326–1330 (1987)CrossRefGoogle Scholar
  76. 76.
    Lu, X., Brown, N.: The transition from ductile to slow crack growth failure in a copolymer of polyethylene. J. Mater. Sci. 25, 411–416 (1990)CrossRefGoogle Scholar
  77. 77.
    Huang, Y., Brown, N.: The effect of molecular weight on slow crack growth in linear polyethylene homopolymers. J. Mater. Sci. 23, 3648–3655 (1988)CrossRefGoogle Scholar
  78. 78.
    Huang, Y., Brown, N.: The dependence of butyl branch density on slow crack growth in polyethylene: Kinetics. J. Polym. Sci., Part B: Polym. Phys. 28, 2007–2021 (1990)CrossRefGoogle Scholar
  79. 79.
    Huang, Y., Brown, N.: Dependence of slow crack growth in polyethylene on butyl branch density: morphology and theory. J. Polym. Sci., Part B: Polym. Phys. 29, 129–137 (1991)CrossRefGoogle Scholar
  80. 80.
    Lu, X., Qian, R., Brown, N.: Notchology—the effect of the notching method on the slow crack growth failure in a tough polyethylene. J. Mater. Sci. 26, 881–888 (1991)CrossRefGoogle Scholar
  81. 81.
    Ward, A.L., Lu, X., Huang, Y., Brown, N.: The mechanism of slow crack growth in polyethylene by an environmental stress cracking agent. Polymer 32, 2172–2178 (1991)CrossRefGoogle Scholar
  82. 82.
    Lu, X., Mcghie, A., Brown, N.: The dependence of slow crack growth in a polyethylene copolymer on test temperature and morphology. J. Polym. Sci., Part B: Polym. Phys. 30, 1207–1214 (1992)CrossRefGoogle Scholar
  83. 83.
    Expertise (Gutachten) No. K 14 450. Technologisches Gewerbemuseum (TGM), Vienna (1993)Google Scholar
  84. 84.
    Chudnovsky, A., Moet, A., Bankert, R.J., Takemori, M.T.: Effect of damage dissemination on crack propagation in polypropylene. J. Appl. Phys. 54, 5562–5567 (1983)CrossRefGoogle Scholar
  85. 85.
    Pinter, G., Haager, M., Balika, W., Lang, R.W.: Cyclic crack growth tests with CRB specimens for the evaluation of the long-term performance of PE pipe grades. Polym. Testing 26, 180–188 (2007)CrossRefGoogle Scholar
  86. 86.
    Pinter, G., Balika, W., Lang, R.W.: A correlation of creep and fatigue crack growth in high density poly(ethylene) at various temperatures. In: Remy, L., Petit, J. (eds.) Temperature–Fatigue Interaction. ESIS Publication 29, Elsevier, Amsterdam, pp. 267–275Google Scholar
  87. 87.
    Zhou, Z., Hiltner, A., Baer, E.: Predicting long-term creep failure of bimodal polyethylene pipe from short-term fatigue tests. J. Mater. Sci. 46, 174–182 (2011)CrossRefGoogle Scholar
  88. 88.
    Frank, A., Lang, R.W., Pinter, G.: Accelerated investigation of creep crack growth in polyethylene pipe grade materials by the use of fatigue tests on cracked round bar specimens. In: Proceedings of 66th Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2008, Milwaukee, 04.–08.05.2008). Society of Plastics Engineers, Bethel (2008), pp. 2435–2439Google Scholar
  89. 89.
    Frank, A., Freimann, W., Pinter, G., Lang, R.W.: A fracture mechanics concept for the accelerated characterization of creep crack growth in PE-HD pipe grades. Eng. Fract. Mech. 76, 2780–2787 (2009)CrossRefGoogle Scholar
  90. 90.
    Ayyer, R., Hiltner, A., Baer, E.: A fatigue-to-creep correlation in air for application to environmental stress cracking of polyethylene. J. Mater. Sci. 42, 7004–7015 (2007)CrossRefGoogle Scholar
  91. 91.
    Nishimura, H., Narisawa, I.: Fatigue behavior of medium-density polyethylene pipes. Polym. Eng. Sci. 31, 399–403 (1991)CrossRefGoogle Scholar
  92. 92.
    Zhou, Y., Brown, N.: The mechanism of fatigue failure in a polyethylene copolymer. J. Polym. Sci., Part B: Polym. Phys. 30, 477–487 (1992)CrossRefGoogle Scholar
  93. 93.
    Janssen, R.P.M., Govaert, L.E., Meijer, H.E.H.: An analytical method to predict fatigue life of thermoplastics in uniaxial loading: sensitivity to wave type, frequency, and stress amplitude. Macromolecules 41, 2531–2540 (2008)CrossRefGoogle Scholar
  94. 94.
    Hertzberg, R.W., Manson, J.A., Skibo, M.D.: Frequency sensitivity of fatigue processes in polymeric solids. Polym. Eng. Sci. 15, 252–260 (1975)CrossRefGoogle Scholar
  95. 95.
    Wyzgoski, M.G., Novak, G.E., Simon, D.L.: Fatigue fracture of nylon polymers. J. Mater. Sci. 25, 4501–4510 (1990)CrossRefGoogle Scholar
  96. 96.
    Pegoretti, A., Ricco, T.: Fatigue crack propagation in polypropylene reinforced with short glass fibres. Compos. Sci. Technol. 59, 1055–1062 (1999)CrossRefGoogle Scholar
  97. 97.
    Frank, A., Redhead, A., Pinter, G.: The influence of test frequency and eccentric crack growth on cyclic CRB tests. In: Proceedings of 70th Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2012, Orlando, 02.–04.04.2012). Society of Plastics Engineers, Bethel (2012), 1899–1904Google Scholar
  98. 98.
    Moskala, E.J.: Effects of mean stress and frequency on fatigue crack propagation in rubber-toughened polycarbonate/copolyester blends. J. Appl. Polym. Sci. 49, 53–64 (1993)CrossRefGoogle Scholar
  99. 99.
    Brown, H.R., Kramer, E.J., Bubeck, R.A.: Studies of craze fibril deformation during fatigue in polystyrene. J. Polym. Sci., Part B: Polym. Phys. 25, 1765–1778 (1987)CrossRefGoogle Scholar
  100. 100.
    Lang, R.W., Pinter, G., Balika, W., Haager, M.: A novel qualification concept for lifetime and safety assessment of PE pressure pipes for arbitrary installation conditions. In: Proceedings of Plastic Pipes XIII (Washington, 02.–05.10.2006). Washington (2006), 12 pagesGoogle Scholar
  101. 101.
    Pinter, G., Lang, R.W., Haager, M.: A test concept for lifetime prediction of polyethylene pressure pipes. Monatshefte für Chemie 138, 347–355 (2007)CrossRefGoogle Scholar
  102. 102.
    Pinter, G., Haager, M., Lang, R.W.: Lifetime and safety assessment of PE pressure pipes based on fracture mechanics fatigue tests. In: Proceedings of 65th Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2007, Cincinnati, 05.–10.05.2007). Society of Plastics Engineers, Bethel (2007), 2921–2925Google Scholar
  103. 103.
    Pinter, G., Arbeiter, F., Berger, I., Frank, A.: Correlation of fracture mechanics based lifetime prediction and internal pipe pressure tests. In: Proceedings of Plastic Pipes XVII (Chicago, 22.–24.09.2014). Chicago (2014), 10 pagesGoogle Scholar
  104. 104.
    Freimann, W.: Charakterisierung des Risswachstumsverhaltens von Cracked Round Bar (CRB) Prüfkörpern auf Basis der Materialnachgiebigkeit. Master thesis. Montan University Leoben, Leoben (2008)Google Scholar
  105. 105.
    Redhead, A., Frank, A., Pinter, G.: Investigation of slow crack growth initiation in polyethylene pipe grades with accelerated cyclic tests. Eng. Fract. Mech. 101, 2–9 (2013)CrossRefGoogle Scholar
  106. 106.
    Frank, A., Pinter, G., Lang, R.W.: Lifetime prediction of polyethylene pipes based on an accelerated extrapolation concept for creep crack growth with fatigue tests on cracked round bar specimens. In: Proceedings of 67th Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2009, Chicago, 22.–24.06.2009). Society of Plastics Engineers, Bethel (2009), 2169–2174Google Scholar
  107. 107.
    Frank, A., Hartl, A.M., Pinter, G., Lang, R.W.: Validation of an accelerated fracture mechanics extrapolation tool for lifetime prediction of PE pressure pipes. In: Proceedings of 68th Annual Technical Conference of the Society of Plastics Engineers (ANTEC 2010, Orlando, 16.–20.05.2010). Society of Plastics Engineers, Bethel (2010), 1638–1643Google Scholar
  108. 108.
    Schoeffl, P.F., Bradler, P.R., Lang, R.W.: Yielding and crack growth testing of polymers under severe liquid media conditions. Polym. Testing 40, 225–233 (2014)CrossRefGoogle Scholar
  109. 109.
    Schoeffl, P.F., Lang, R.W.: Effect of liquid oilfield-related media on slow crack growth behavior in polyethylene pipe grade materials. Int. J. Fatigue 72, 90–101 (2015)CrossRefGoogle Scholar
  110. 110.
    Arbeiter, F., Pinter, G., Frank, A.: Characterisation of quasi-brittle fatigue crack growth in pipe grade polypropylene block copolymer. Polym. Testing 37, 186–192 (2014)CrossRefGoogle Scholar
  111. 111.
    Market Study: Plastic Pipes—World. Ceresana Research, Constance (2011)Google Scholar
  112. 112.
    Frank, A., Berger, I., Arbeiter, F., Pinter, G.: Characterization of crack initiation and slow crack growth resistance of PE 100 and PE 100 RC pipe grades with cyclic cracked round bar (CRB) tests. In: Proceedings of Plastic Pipes XVII (Chicago, 22.–24.09.2014). Chicago (2014), 10 pagesGoogle Scholar
  113. 113.
    ISO 18489 (2015): Polyethylene (PE) materials for piping systems—Determination of resistance to slow cracked growth under cyclic loading—Cracked Round Bar test methodGoogle Scholar
  114. 114.
    Kratochvilla, T.R., Frank, A., Pinter, G.: Determination of slow crack growth behaviour of polyethylene pressure pipes with cracked round bar test. Polym. Testing 40, 299–303 (2014)CrossRefGoogle Scholar
  115. 115.
    Frank, A., Redhead, A., Kratochvilla, T., Dragaun, H., Pinter, G.: Accelerated material ranking with cyclic CRB tests. In: Proceedings of Plastic Pipes XVI (Barcelona, 24.–26.09.2012). Barcelona (2012), 10 pagesGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • F. Arbeiter
    • 1
  • G. Pinter
    • 1
    • 3
  • R. W. Lang
    • 2
  • A. Frank
    • 3
  1. 1.Department Polymer Engineering and ScienceMontan University LeobenLeobenAustria
  2. 2.Institute of Polymeric Materials and TestingJohannes Keppler University LinzLinzAustria
  3. 3.Polymer Competence Center Leoben GmbHLeobenAustria

Personalised recommendations