Advertisement

Pathophysiology of Acute Respiratory Distress Syndrome

  • Pedro Leme Silva
  • Patricia R. M. RoccoEmail author
Chapter

Abstract

Important advances have been made in our understanding of acute respiratory distress syndrome (ARDS) pathophysiology, largely as the result of mechanistic studies about the most important cells involved in this condition, such as alveolar macrophages, neutrophils, and alveolar epithelial and endothelial cells. For each of these cell types, new pathways have been recognized in line with the clinical picture of ARDS, ranging from macrophage phenotypes, neutrophil extracellular traps, and antigen recognition by epithelial cells to specific surfactant release and biomarkers related to endothelial function. In the clinical setting, there is growing evidence for better ARDS phenotype recognition. It is clear that differences in biomarkers and prognosis exist between pulmonary and extrapulmonary phenotypes, as well as between traumatic, transfusion-related, cancer-related, and septic phenotypes. Such stratification has been done in other respiratory diseases, such as asthma and chronic obstructive pulmonary disease, with interesting results, and might improve outcomes in ARDS.

Keywords

Acute Respiratory Distress Syndrome Acute Respiratory Distress Syndrome Patient Diffuse Alveolar Damage Cardiogenic Pulmonary Edema Pulmonary Vascular Permeability Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F et al (2013) Circulating histones are mediators of trauma-associated lung injury. [Research Support, Non-U.S. Gov’t]. Am J Respir Crit Care Med 187(2):160–169CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aggarwal NR, King LS, D’Alessio FR (2014) Diverse macrophage populations mediate acute lung inflammation and resolution. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Am J Physiol Lung Cell Mol Physiol 306(8):L709–L725CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Belenkiy SM, Buel AR, Cannon JW, Sine CR, Aden JK, Henderson JL et al (2014) Acute respiratory distress syndrome in wartime military burns: application of the Berlin criteria. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. J Trauma Acute Care Surg 76(3):821–827CrossRefPubMedGoogle Scholar
  4. 4.
    Bitterman PB (1992) Pathogenesis of fibrosis in acute lung injury. [Review]. Am J Med 92(6A):39S–43SCrossRefPubMedGoogle Scholar
  5. 5.
    Brinkmann, V., Laube, B., Abu Abed, U., Goosmann, C., & Zychlinsky, A. (2010). Neutrophil extracellular traps: how to generate and visualize them. [Video-Audio Media]. J Visual Exp: JoVE (36).Google Scholar
  6. 6.
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. [Research Support, U.S. Gov’t, P.H.S.]. Science 303(5663):1532–1535CrossRefPubMedGoogle Scholar
  7. 7.
    Calfee CS, Eisner MD, Ware LB, Thompson BT, Parsons PE, Wheeler AP et al (2007) Trauma-associated lung injury differs clinically and biologically from acute lung injury due to other clinical disorders. [Comparative Study]. Crit Care Med 35(10):2243–2250CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Calfee CS, Janz DR, Bernard GR, May AK, Kangelaris KN, Matthay MA et al (2015) Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. [Comparative Study Multicenter Study Observational Study Randomized Controlled Trial Research Support, N.I.H., Extramural]. Chest 147(6):1539–1548CrossRefPubMedGoogle Scholar
  9. 9.
    Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M et al (2012) Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. [Research Support, N.I.H., Extramural]. J Clin Invest 122(7):2661–2671CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    David S, Mukherjee A, Ghosh CC, Yano M, Khankin EV, Wenger JB et al (2012) Angiopoietin-2 may contribute to multiple organ dysfunction and death in sepsis*. [Research Support, N.I.H., Extramural]. Crit Care Med 40(11):3034–3041CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dicker RA, Morabito DJ, Pittet JF, Campbell AR, Mackersie RC (2004) Acute respiratory distress syndrome criteria in trauma patients: why the definitions do not work. [Research Support, U.S. Gov’t, P.H.S.]. J Trauma 57(3):522–526 ; discussion 526–528CrossRefPubMedGoogle Scholar
  12. 12.
    Diep BA, Chan L, Tattevin P, Kajikawa O, Martin TR, Basuino L et al (2010) Polymorphonuclear leukocytes mediate Staphylococcus aureus Panton-Valentine leukocidin-induced lung inflammation and injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Proc Natl Acad Sci U S A 107(12):5587–5592CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Estenssoro E, Dubin A, Laffaire E, Canales H, Saenz G, Moseinco M et al (2002) Incidence, clinical course, and outcome in 217 patients with acute respiratory distress syndrome. [Multicenter Study]. Crit Care Med 30(11):2450–2456CrossRefPubMedGoogle Scholar
  14. 14.
    Fadeyi EA, De Los Angeles Muniz M, Wayne AS, Klein HG, Leitman SF, Stroncek DF (2007) The transfusion of neutrophil-specific antibodies causes leukopenia and a broad spectrum of pulmonary reactions. [Case Reports Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]. Transfusion 47(3):545–550CrossRefPubMedGoogle Scholar
  15. 15.
    Fiedler U, Scharpfenecker M, Koidl S, Hegen A, Grunow V, Schmidt JM et al (2004) The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies. [Research Support, Non-U.S. Gov’t]. Blood 103(11):4150–4156CrossRefPubMedGoogle Scholar
  16. 16.
    Fox ED, Heffernan DS, Cioffi WG, Reichner JS (2013) Neutrophils from critically ill septic patients mediate profound loss of endothelial barrier integrity. [Research Support, N.I.H., Extramural]. Crit Care 17(5):R226CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fudala R, Krupa A, Matthay MA, Allen TC, Kurdowska AK (2007) Anti-IL-8 autoantibody: IL-8 immune complexes suppress spontaneous apoptosis of neutrophils. [Research Support, N.I.H., Extramural]. Am J Physiol Lung Cell Mol Physiol 293(2):L364–L374CrossRefPubMedGoogle Scholar
  18. 18.
    Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A (1998) Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? [Research Support, Non-U.S. Gov’t]. Am J Respir Crit Care Med 158(1):3–11CrossRefPubMedGoogle Scholar
  19. 19.
    Gong H, Rehman J, Tang H, Wary K, Mittal M, Chaturvedi P et al (2015) HIF2alpha signaling inhibits adherens junctional disruption in acute lung injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Clin Invest 125(2):652–664CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Grailer JJ, Ward PA (2014) Lung inflammation and damage induced by extracellular histones. Inflamm Cell Signal 1(4)Google Scholar
  21. 21.
    Greene KE, Wright JR, Steinberg KP, Ruzinski JT, Caldwell E, Wong WB et al (1999) Serial changes in surfactant-associated proteins in lung and serum before and after onset of ARDS. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. Am J Respir Crit Care Med 160(6):1843–1850CrossRefPubMedGoogle Scholar
  22. 22.
    Hartshorn KL, Crouch E, White MR, Colamussi ML, Kakkanatt A, Tauber B et al (1998) Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Am J Phys 274(6 Pt 1):L958–L969Google Scholar
  23. 23.
    Hoeboer SH, Groeneveld AB, van der Heijden M, Oudemans-van Straaten HM (2015) Serial inflammatory biomarkers of the severity, course and outcome of late onset acute respiratory distress syndrome in critically ill patients with or at risk for the syndrome after new-onset fever. Biomark Med 9(6):605–616CrossRefPubMedGoogle Scholar
  24. 24.
    Khan H, Belsher J, Yilmaz M, Afessa B, Winters JL, Moore SB et al (2007) Fresh-frozen plasma and platelet transfusions are associated with development of acute lung injury in critically ill medical patients. [Research Support, N.I.H., Extramural]. Chest 131(5):1308–1314CrossRefPubMedGoogle Scholar
  25. 25.
    Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF et al (2006) Surfactant proteins SP-A and SP-D: structure, function and receptors. [Research Support, Non-U.S. Gov’t Review]. Mol Immunol 43(9):1293–1315CrossRefPubMedGoogle Scholar
  26. 26.
    Kurdowska A, Noble JM, Grant IS, Robertson CR, Haslett C, Donnelly SC (2002) Anti-interleukin-8 autoantibodies in patients at risk for acute respiratory distress syndrome. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Crit Care Med 30(10):2335–2337CrossRefPubMedGoogle Scholar
  27. 27.
    Kurdowska AK, Geiser TK, Alden SM, Dziadek BR, Noble JM, Nuckton TJ et al (2002) Activity of pulmonary edema fluid interleukin-8 bound to alpha(2)-macroglobulin in patients with acute lung injury. [Research Support, U.S. Gov’t, P.H.S.]. American journal of physiology. Lung Cell Mol Physiol 282(5):L1092–L1098CrossRefGoogle Scholar
  28. 28.
    Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. [Research Support, Non-U.S. Gov’t Review]. Nat Rev Immunol 11(11):750–761CrossRefPubMedGoogle Scholar
  29. 29.
    Lee A, Whyte MK, Haslett C (1993) Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. [Research Support, Non-U.S. Gov’t]. J Leukoc Biol 54(4):283–288PubMedGoogle Scholar
  30. 30.
    Lee YL, King MB, Gonzalez RP, Brevard SB, Frotan MA, Gillespie MN et al (2014) Blood transfusion products contain mitochondrial DNA damage-associated molecular patterns: a potential effector of transfusion-related acute lung injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. J Surg Res 191(2):286–289CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lorente JA, Cardinal-Fernandez P, Munoz D, Frutos-Vivar F, Thille AW, Jaramillo C et al (2015) Acute respiratory distress syndrome in patients with and without diffuse alveolar damage: an autopsy study. Intensive Care Med 41(11):1921–1930CrossRefPubMedGoogle Scholar
  32. 32.
    Martin AM Jr, Soloway HB, Simmons RL (1968) Pathologic anatomy of the lungs following shock and trauma. J Trauma 8(5):687–699CrossRefPubMedGoogle Scholar
  33. 33.
    Matthay MA, Eschenbacher WL, Goetzl EJ (1984) Elevated concentrations of leukotriene D4 in pulmonary edema fluid of patients with the adult respiratory distress syndrome. [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. J Clin Immunol 4(6):479–483CrossRefPubMedGoogle Scholar
  34. 34.
    Matthay MA, Ware LB (2004) Plasma protein C levels in patients with acute lung injury: prognostic significance. [Research Support, U.S. Gov’t, P.H.S.]. Crit Care Med 32(5 Suppl):S229–S232CrossRefPubMedGoogle Scholar
  35. 35.
    Matthay MA, Zimmerman GA (2005) Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S. Review]. Am J Respir Cell Mol Biol 33(4):319–327CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mehta D, Ravindran K, Kuebler WM (2014) Novel regulators of endothelial barrier function. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Am J Physiol Lung Cell Mol Physiol 307(12):L924–L935CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Menezes SL, Bozza PT, Neto HC, Laranjeira AP, Negri EM, Capelozzi VL et al (2005) Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. [Comparative Study Research Support, Non-U.S. Gov’t]. J Appl Physiol 98(5):1777–1783CrossRefPubMedGoogle Scholar
  38. 38.
    Miller EJ, Cohen AB, Matthay MA (1996) Increased interleukin-8 concentrations in the pulmonary edema fluid of patients with acute respiratory distress syndrome from sepsis. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Crit Care Med 24(9):1448–1454CrossRefPubMedGoogle Scholar
  39. 39.
    Miller EJ, Cohen AB, Nagao S, Griffith D, Maunder RJ, Martin TR et al (1992) Elevated levels of NAP-1/interleukin-8 are present in the airspaces of patients with the adult respiratory distress syndrome and are associated with increased mortality. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. Am Rev Respir Dis 146(2):427–432CrossRefPubMedGoogle Scholar
  40. 40.
    Modelska K, Pittet JF, Folkesson HG, Courtney Broaddus V, Matthay MA (1999) Acid-induced lung injury. Protective effect of anti-interleukin-8 pretreatment on alveolar epithelial barrier function in rabbits. [Research Support, U.S. Gov’t, P.H.S.]. Am J Respir Crit Care Med 160(5 Pt 1):1450–1456CrossRefPubMedGoogle Scholar
  41. 41.
    Mokart D, Lambert J, Schnell D, Fouche L, Rabbat A, Kouatchet A et al (2013) Delayed intensive care unit admission is associated with increased mortality in patients with cancer with acute respiratory failure. Leuk Lymphoma 54(8):1724–1729CrossRefPubMedGoogle Scholar
  42. 42.
    Morisawa K, Fujitani S, Taira Y, Kushimoto S, Kitazawa Y, Okuchi K et al (2014) Difference in pulmonary permeability between indirect and direct acute respiratory distress syndrome assessed by the transpulmonary thermodilution technique: a prospective, observational, multi-institutional study. J Intens Care 2(1):24CrossRefGoogle Scholar
  43. 43.
    Muller MC, Juffermans NP (2012) Transfusion-related acute lung injury: a preventable syndrome? [Review]. Expert Rev Hematol 5(1):97–106CrossRefPubMedGoogle Scholar
  44. 44.
    Ognibene FP, Martin SE, Parker MM, Schlesinger T, Roach P, Burch C et al (1986) Adult respiratory distress syndrome in patients with severe neutropenia. N Engl J Med 315(9):547–551CrossRefPubMedGoogle Scholar
  45. 45.
    Pelosi P, D’Onofrio D, Chiumello D, Paolo S, Chiara G, Capelozzi VL et al (2003) Pulmonary and extrapulmonary acute respiratory distress syndrome are different. [Review]. Eur Respir J Suppl 42:48s–56sCrossRefPubMedGoogle Scholar
  46. 46.
    Peltz ED, Moore EE, Eckels PC, Damle SS, Tsuruta Y, Johnson JL et al (2009) HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans. [Research Support, N.I.H., Extramural]. Shock 32(1):17–22CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Reilly JP, Bellamy S, Shashaty MG, Gallop R, Meyer NJ, Lanken PN et al (2014) Heterogeneous phenotypes of acute respiratory distress syndrome after major trauma. [Research Support, N.I.H., Extramural]. Ann Am Thorac Soc 11(5):728–736CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ricciuto DR, dos Santos CC, Hawkes M, Toltl LJ, Conroy AL, Rajwans N et al (2011) Angiopoietin-1 and angiopoietin-2 as clinically informative prognostic biomarkers of morbidity and mortality in severe sepsis. [Multicenter Study Research Support, Non-U.S. Gov’t]. Crit Care Med 39(4):702–710CrossRefPubMedGoogle Scholar
  49. 49.
    Rittirsch D, Flierl MA, Ward PA (2008) Harmful molecular mechanisms in sepsis. [Research Support, N.I.H., Extramural Review]. Nat Rev Immunol 8(10):776–787CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rizzo, A. N., Sammani, S., Esquinca, A. E., Jacobson, J. R., Garcia, J. G., Letsiou, E., et al. (2015). Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury. Am J Physiol Lung Cell Mol Physiol, ajplung 00031 02015Google Scholar
  51. 51.
    Rocco PR, Pelosi P (2008) Pulmonary and extrapulmonary acute respiratory distress syndrome: myth or reality? [Review]. Curr Opin Crit Care 14(1):50–55CrossRefPubMedGoogle Scholar
  52. 52.
    Rosseau S, Hammerl P, Maus U, Walmrath HD, Schutte H, Grimminger F et al (2000) Phenotypic characterization of alveolar monocyte recruitment in acute respiratory distress syndrome. [Research Support, Non-U.S. Gov’t]. Am J Physiol Lung Cell Mol Physiol 279(1):L25–L35PubMedGoogle Scholar
  53. 53.
    Rubenfeld GD (2015) Confronting the frustrations of negative clinical trials in acute respiratory distress syndrome. Ann Am Thorac Soc 12(Suppl 1):S58–S63CrossRefPubMedGoogle Scholar
  54. 54.
    Santos FB, Nagato LK, Boechem NM, Negri EM, Guimaraes A, Capelozzi VL et al (2006) Time course of lung parenchyma remodeling in pulmonary and extrapulmonary acute lung injury. [Research Support, Non-U.S. Gov’t]. J Appl Physiol 100(1):98–106CrossRefPubMedGoogle Scholar
  55. 55.
    Sheu CC, Gong MN, Zhai R, Chen F, Bajwa EK, Clardy PF et al (2010) Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. [Research Support, N.I.H., Extramural]. Chest 138(3):559–567CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Silliman CC, McLaughlin NJ (2006) Transfusion-related acute lung injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Blood Rev 20(3):139–159CrossRefPubMedGoogle Scholar
  57. 57.
    Silva PL, Rocco PR, Pelosi P (2015) FG-4497: a new target for acute respiratory distress syndrome? [Research Support, Non-U.S. Gov’t]. Exp Rev Respir Med 9(4):405–409Google Scholar
  58. 58.
    Soubani, A. O., Shehada, E., Chen, W., & Smith, D. (2014). The outcome of cancer patients with acute respiratory distress syndrome. J Crit Care 29(1):183 e187–183 e112Google Scholar
  59. 59.
    Swanson K, Dwyre DM, Krochmal J, Raife TJ (2006) Transfusion-related acute lung injury (TRALI): current clinical and pathophysiologic considerations. [Case Reports Review]. Lung 184(3):177–185CrossRefPubMedGoogle Scholar
  60. 60.
    Thomas GM, Carbo C, Curtis BR, Martinod K, Mazo IB, Schatzberg D et al (2012) Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Blood 119(26):6335–6343CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thurston G, Rudge JS, Ioffe E, Zhou H, Ross L, Croll SD et al (2000) Angiopoietin-1 protects the adult vasculature against plasma leakage. [Research Support, U.S. Gov’t, P.H.S.]. Nat Med 6(4):460–463CrossRefPubMedGoogle Scholar
  62. 62.
    Toshchakov V, Jones BW, Perera PY, Thomas K, Cody MJ, Zhang S et al (2002) TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta-dependent gene expression in macrophages. [Research Support, U.S. Gov’t, P.H.S.]. Nat Immunol 3(4):392–398CrossRefPubMedGoogle Scholar
  63. 63.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. [Historical Article Review]. N Engl J Med 342(18):1334–1349CrossRefPubMedGoogle Scholar
  64. 64.
    Watson GA, Sperry JL, Rosengart MR, Minei JP, Harbrecht BG, Moore EE et al (2009) Fresh frozen plasma is independently associated with a higher risk of multiple organ failure and acute respiratory distress syndrome. [Multicenter Study Research Support, N.I.H., Extramural]. J Trauma 67(2):221–227 ; discussion 228–230CrossRefPubMedGoogle Scholar
  65. 65.
    Wiener-Kronish JP, Albertine KH, Matthay MA (1991) Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin. [Research Support, U.S. Gov’t, P.H.S.]. J Clin Invest 88(3):864–875CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wiener-Kronish JP, Pittet JF (2011) Therapies against virulence products of Staphylococcus aureus and Pseudomonas aeruginosa. [Review]. Semin Respir Crit Care Med 32(2):228–235CrossRefPubMedGoogle Scholar
  67. 67.
    Wilhelmsen K, Mesa KR, Prakash A, Xu F, Hellman J (2012) Activation of endothelial TLR2 by bacterial lipoprotein upregulates proteins specific for the neutrophil response. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Innate Immun 18(4):602–616CrossRefPubMedGoogle Scholar
  68. 68.
    Williams AE, Chambers RC (2014) The mercurial nature of neutrophils: still an enigma in ARDS? [Research Support, Non-U.S. Gov’t Review]. Am J Physiol Lung Cell Mol Physiol 306(3):L217–L230CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang J, Fukuhara S, Sako K, Takenouchi T, Kitani H, Kume T et al (2011) Angiopoietin-1/Tie2 signal augments basal Notch signal controlling vascular quiescence by inducing delta-like 4 expression through AKT-mediated activation of beta-catenin. [Research Support, Non-U.S. Gov’t]. J Biol Chem 286(10):8055–8066CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zhang Y, Wen Z, Guan L, Jiang P, Gu T, Zhao J et al (2015) Extracellular histones play an inflammatory role in acid aspiration-induced acute respiratory distress syndrome. [Research Support, Non-U.S. Gov’t]. Anesthesiology 122(1):127–139CrossRefPubMedGoogle Scholar
  71. 71.
    Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN et al (2010) Nomenclature of monocytes and dendritic cells in blood. [Research Support, Non-U.S. Gov’t]. Blood 116(16):e74–e80CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics InstituteFederal University of Rio de Janeiro, Avenida Carlos Chagas FilhoRio de JaneiroBrazil

Personalised recommendations