Acute Respiratory Distress Syndrome: Metabolic Support

  • Michele Umbrello
  • Danilo Radrizzani
  • Gaetano Iapichino


Nutritional support to ARDS patients shares metabolic concepts common to other categories of critically ill patients; however, it generates a particular concern due to the underlying limitation of oxygen supply and the difficulties of carbon dioxide disposal. In the present chapter, after shortly summarizing the pathophysiology of critical illness, stress response, and patients’ metabolic requirements, we will describe the characteristic features of artificial nutrition and metabolic support in patients with acute respiratory failure. We will underline the fact that, in patients with ARDS, several aspects of energy consumption physiology and of substrate supply, disposal and transformation, oxidation, and storage which, in the absence of respiratory failure may have a less relevant impact, have to be then carefully taken into account.

The physiologic effects of every substrate metabolism will be described, as for their effect in terms of energy consumption, their impact on diet-induced thermogenesis, and their cost for disposal, transformation, and storage. Moreover, we will review any possible direct effect of single macronutrients on lung tissue during ARDS. In the end, we will summarize the peculiar characteristics of metabolic control of critically ill patients with ARDS, and a suggestion as to the ideal methods of metabolic support will be provided.


Acute Respiratory Failure Nutritional Support Indirect Calorimetry Medium Chain Triglyceride Rest Energy Expenditure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Armstrong L, Millar AB (1997) Relative production of tumour necrosis factor alpha and interleukin 10 in adult respiratory distress syndrome. Thorax 52(5):442–446CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nandi J, Meguid MM, Inui A, Xu Y, Makarenko IG, Tada T, Chen C (2002) Central mechanisms involved with catabolism. Curr Opin Clin Nutr Metab Care 5(4):407–418CrossRefPubMedGoogle Scholar
  3. 3.
    Dungan KM, Braithwaite SS, Preiser JC (2009) Stress hyperglycaemia. Lancet 373(9677):1798–1807. doi: 10.1016/S0140-6736(09)60553-5 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Monk DN, Plank LD, Franch-Arcas G, Finn PJ, Streat SJ, Hill GL (1996) Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg 223(4):395–405CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Montejo JC, Minambres E, Bordeje L, Mesejo A, Acosta J, Heras A, Ferre M, Fernandez-Ortega F, Vaquerizo CI, Manzanedo R (2010) Gastric residual volume during enteral nutrition in ICU patients: the REGANE study. Intensive Care Med 36(8):1386–1393. doi: 10.1007/s00134-010-1856-y CrossRefPubMedGoogle Scholar
  6. 6.
    Singer P, Pichard C (2013) Reconciling divergent results of the latest parenteral nutrition studies in the ICU. Curr Opin Clin Nutr Metab Care 16(2):187–193. doi: 10.1097/MCO.0b013e32835c34be CrossRefPubMedGoogle Scholar
  7. 7.
    Berger MM, Pichard C (2014) Development and current use of parenteral nutrition in critical care – an opinion paper. Crit Care 18(4):478. doi: 10.1186/s13054-014-0478-0 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeux RNM, Delarue J, Berger MM (2005) Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr 24(4):502–509. doi: 10.1016/j.clnu.2005.03.006 CrossRefPubMedGoogle Scholar
  9. 9.
    Dvir D, Cohen J, Singer P (2006) Computerized energy balance and complications in critically ill patients: an observational study. Clin Nutr 25(1):37–44. doi: 10.1016/j.clnu.2005.10.010 CrossRefPubMedGoogle Scholar
  10. 10.
    Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, Heyland DK (2009) The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med 35(10):1728–1737. doi: 10.1007/s00134-009-1567-4 CrossRefPubMedGoogle Scholar
  11. 11.
    Kreymann KG, Berger MM, Deutz NE, Hiesmayr M, Jolliet P, Kazandjiev G, Nitenberg G, van den Berghe G, Wernerman J, Ebner C, Hartl W, Heymann C, Spies C (2006) ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr 25(2):210–223. doi: 10.1016/j.clnu.2006.01.021 CrossRefPubMedGoogle Scholar
  12. 12.
    Singer P, Berger MM, Van den Berghe G, Biolo G, Calder P, Forbes A, Griffiths R, Kreyman G, Leverve X, Pichard C, ESPEN (2009) ESPEN guidelines on parenteral nutrition: intensive care. Clin Nutr 28(4):387–400. doi: 10.1016/j.clnu.2009.04.024 CrossRefPubMedGoogle Scholar
  13. 13.
    Taylor BE, McClave SA, Martindale RG, Warren MM, Johnson DR, Braunschweig C, McCarthy MS, Davanos E, Rice TW, Cresci GA, Gervasio JM, Sacks GS, Roberts PR, Compher C (2016) Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). Crit Care Med 44(2):390–438. doi: 10.1097/CCM.0000000000001525 CrossRefPubMedGoogle Scholar
  14. 14.
    Hoffer LJ, Bistrian BR (2013) Why critically ill patients are protein deprived. JPEN J Parenter Enteral Nutr 37(3):300–309. doi: 10.1177/0148607113478192 CrossRefPubMedGoogle Scholar
  15. 15.
    Umbrello M, Salice V, Spanu P, Formenti P, Barassi A, Melzi d'Eril GV, Iapichino G (2014) Performance assessment of a glucose control protocol in septic patients with an automated intermittent plasma glucose monitoring device. Clin Nutr 33(5):867–871. doi: 10.1016/j.clnu.2013.10.007 CrossRefPubMedGoogle Scholar
  16. 16.
    Eslami S, Abu-Hanna A, de Jonge E, de Keizer NF (2009) Tight glycemic control and computerized decision-support systems: a systematic review. Intensive Care Med 35(9):1505–1517. doi: 10.1007/s00134-009-1542-0 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Heyland D, Muscedere J, Wischmeyer PE, Cook D, Jones G, Albert M, Elke G, Berger MM, Day AG (2013) A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med 368(16):1489–1497. doi: 10.1056/NEJMoa1212722 CrossRefPubMedGoogle Scholar
  18. 18.
    Bertolini G, Iapichino G, Radrizzani D, Facchini R, Simini B, Bruzzone P, Zanforlin G, Tognoni G (2003) Early enteral immunonutrition in patients with severe sepsis: results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med 29(5):834–840. doi: 10.1007/s00134-003-1711-5 CrossRefPubMedGoogle Scholar
  19. 19.
    Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307(23):2526–2533. doi: 10.1001/jama.2012.5669 PubMedGoogle Scholar
  20. 20.
    Krzak A, Pleva M, Napolitano LM (2011) Nutrition therapy for ALI and ARDS. Crit Care Clin 27(3):647–659. doi: 10.1016/j.ccc.2011.05.004 CrossRefPubMedGoogle Scholar
  21. 21.
    Aubier M, Murciano D, Lecocguic Y, Viires N, Jacquens Y, Squara P, Pariente R (1985) Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N Engl J Med 313(7):420–424. doi: 10.1056/NEJM198508153130705 CrossRefPubMedGoogle Scholar
  22. 22.
    Askanazi J, Weissman C, Rosenbaum SH, Hyman AI, Milic-Emili J, Kinney JM (1982) Nutrition and the respiratory system. Crit Care Med 10(3):163–172CrossRefPubMedGoogle Scholar
  23. 23.
    Pingleton SK, Harmon GS (1987) Nutritional management in acute respiratory failure. JAMA 257(22):3094–3099CrossRefPubMedGoogle Scholar
  24. 24.
    Wilson DO, Rogers RM, Sanders MH, Pennock BE, Reilly JJ (1986) Nutritional intervention in malnourished patients with emphysema. Am Rev Respir Dis 134(4):672–677. doi: 10.1164/arrd.1986.134.4.672 PubMedGoogle Scholar
  25. 25.
    Fraser IM (1986) Effects of refeeding on respiration and skeletal muscle function. Clin Chest Med 7(1):131–139PubMedGoogle Scholar
  26. 26.
    McClave SA (1997) The consequences of overfeeding and underfeeding. J Resp Care Pract 10:57–58Google Scholar
  27. 27.
    Iapichino G, Radrizzani D, Armani S, Noto A, Spanu P, Mistraletti G (2006) Metabolic treatment of critically ill patients: energy balance and substrate disposal. Minerva Anestesiol 72(6):533–541PubMedGoogle Scholar
  28. 28.
    Iapichino G, Radrizzani D, Giacomini M, Pezzi A, Zaniboni M, Mistraletti G (2006) Metabolic treatment of critically ill patients: energy expenditure and energy supply. Minerva Anestesiol 72(6):559–565PubMedGoogle Scholar
  29. 29.
    Cahill GF Jr (2006) Fuel metabolism in starvation. Annu Rev Nutr 26:1–22. doi: 10.1146/annurev.nutr.26.061505.111258 CrossRefPubMedGoogle Scholar
  30. 30.
    Jequier E (1986) The influence of nutrient administration on energy expenditure in man. Clin Nutr 5(4):181–186CrossRefPubMedGoogle Scholar
  31. 31.
    Chassard D, Guiraud M, Gauthier J, Gelas P, Berrada KR, Bouletreau P (1994) Effects of intravenous medium-chain triglycerides on pulmonary gas exchanges in mechanically ventilated patients. Crit Care Med 22(2):248–251CrossRefPubMedGoogle Scholar
  32. 32.
    Fraipont V, Preiser JC (2013) Energy estimation and measurement in critically ill patients. JPEN J Parenter Enteral Nutr 37(6):705–713. doi: 10.1177/0148607113505868 CrossRefPubMedGoogle Scholar
  33. 33.
    McClave SA, Lowen CC, Kleber MJ, Nicholson JF, Jimmerson SC, McConnell JW, Jung LY (1998) Are patients fed appropriately according to their caloric requirements? JPEN J Parenter Enteral Nutr 22(6):375–381CrossRefPubMedGoogle Scholar
  34. 34.
    De Waele E, Opsomer T, Honore PM, Diltoer M, Mattens S, Huyghens L, Spapen H (2015) Measured versus calculated resting energy expenditure in critically ill adult patients. Do mathematics match the gold standard? Minerva Anestesiol 81(3):272–282PubMedGoogle Scholar
  35. 35.
    Wei X, Day AG, Ouellette-Kuntz H, Heyland DK (2015) The association between nutritional adequacy and long-term outcomes in critically ill patients requiring prolonged mechanical ventilation: a Multicenter Cohort Study. Crit Care Med 43(8):1569–1579. doi: 10.1097/CCM.0000000000001000 CrossRefPubMedGoogle Scholar
  36. 36.
    Heyland DK, Cahill N, Day AG (2011) Optimal amount of calories for critically ill patients: depends on how you slice the cake! Crit Care Med 39(12):2619–2626. doi: 10.1097/CCM.0b013e318226641d CrossRefPubMedGoogle Scholar
  37. 37.
    Weijs PJ, Stapel SN, de Groot SD, Driessen RH, de Jong E, Girbes AR, Strack van Schijndel RJ, Beishuizen A (2012) Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J Parenter Enteral Nutr 36(1):60–68. doi: 10.1177/0148607111415109 CrossRefPubMedGoogle Scholar
  38. 38.
    Allingstrup MJ, Esmailzadeh N, Wilkens Knudsen A, Espersen K, Hartvig Jensen T, Wiis J, Perner A, Kondrup J (2012) Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nutr 31(4):462–468. doi: 10.1016/j.clnu.2011.12.006 CrossRefPubMedGoogle Scholar
  39. 39.
    Hoffer LJ, Bistrian BR (2015) Energy deficit is clinically relevant for critically ill patients: no. Intensive Care Med 41(2):339–341. doi: 10.1007/s00134-014-3518-y CrossRefPubMedGoogle Scholar
  40. 40.
    Chapple LA, Chapman MJ, Lange K, Deane AM, Heyland DK (2016) Nutrition support practices in critically ill head-injured patients: a global perspective. Crit Care 20(1):6. doi: 10.1186/s13054-015-1177-1 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Weir JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109(1–2):1–9CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Brandi LS, Bertolini R, Calafa M (1997) Indirect calorimetry in critically ill patients: clinical applications and practical advice. Nutrition 13(4):349–358CrossRefPubMedGoogle Scholar
  43. 43.
    Simonson DC, DeFronzo RA (1990) Indirect calorimetry: methodological and interpretative problems. Am J Physiol 258(3 Pt 1):E399–E412PubMedGoogle Scholar
  44. 44.
    Compher C, Nicolo M, Chittams J, Kang Y, Day AG, Heyland DK (2015) Clinical outcomes in critically ill patients associated with the use of complex vs weight-only predictive energy equations. JPEN J Parenter Enteral Nutr 39(7):864–869. doi: 10.1177/0148607114533127 CrossRefPubMedGoogle Scholar
  45. 45.
    Radrizzani D, Iapichino G (2015) Every need is perfectly met if you do not measure it. Minerva Anestesiol 81(3):253–254PubMedGoogle Scholar
  46. 46.
    Askanazi J, Elwyn DH, Silverberg PA, Rosenbaum SH, Kinney JM (1980) Respiratory distress secondary to a high carbohydrate load: a case report. Surgery 87(5):596–598PubMedGoogle Scholar
  47. 47.
    Askanazi J, Nordenstrom J, Rosenbaum SH, Elwyn DH, Hyman AI, Carpentier YA, Kinney JM (1981) Nutrition for the patient with respiratory failure: glucose vs. fat. Anesthesiology 54(5):373–377CrossRefPubMedGoogle Scholar
  48. 48.
    al-Saady NM, Blackmore CM, Bennett ED (1989) High fat, low carbohydrate, enteral feeding lowers PaCO2 and reduces the period of ventilation in artificially ventilated patients. Intensive Care Med 15(5):290–295Google Scholar
  49. 49.
    Garrel DR, Razi M, Lariviere F, Jobin N, Naman N, Emptoz-Bonneton A, Pugeat MM (1995) Improved clinical status and length of care with low-fat nutrition support in burn patients. JPEN J Parenter Enteral Nutr 19(6):482–491CrossRefPubMedGoogle Scholar
  50. 50.
    Hart DW, Wolf SE, Zhang XJ, Chinkes DL, Buffalo MC, Matin SI, DebRoy MA, Wolfe RR, Herndon DN (2001) Efficacy of a high-carbohydrate diet in catabolic illness. Crit Care Med 29(7):1318–1324CrossRefPubMedGoogle Scholar
  51. 51.
    Wolf SE, Shields BA, Wade CE (2009) Substrate utilization in the critically ill. JPEN J Parenter Enteral Nutr 33(1):111; author reply 112. doi: 10.1177/0148607108319798
  52. 52.
    Cree MG, Aarsland A, Herndon DN, Wolfe RR (2007) Role of fat metabolism in burn trauma-induced skeletal muscle insulin resistance. Crit Care Med 35(9 Suppl):S476–S483. doi: 10.1097/01.CCM.0000278066.05354.53 CrossRefPubMedGoogle Scholar
  53. 53.
    Aarsland A, Chinkes DL, Sakurai Y, Nguyen TT, Herndon DN, Wolfe RR (1998) Insulin therapy in burn patients does not contribute to hepatic triglyceride production. J Clin Invest 101(10):2233–2239. doi: 10.1172/JCI200 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Pendyala G, Want EJ, Webb W, Siuzdak G, Fox HS (2007) Biomarkers for neuroAIDS: the widening scope of metabolomics. J Neuroimmune Pharmacol Off J Soc NeuroImmune Pharmacol 2(1):72–80. doi: 10.1007/s11481-006-9041-3 CrossRefGoogle Scholar
  55. 55.
    Battistella FD, Widergren JT, Anderson JT, Siepler JK, Weber JC, MacColl K (1997) A prospective, randomized trial of intravenous fat emulsion administration in trauma victims requiring total parenteral nutrition. J Trauma 43(1):52–58; discussion 58–60Google Scholar
  56. 56.
    Calder PC (2004) n-3 fatty acids, inflammation, and immunity – relevance to postsurgical and critically ill patients. Lipids 39(12):1147–1161CrossRefPubMedGoogle Scholar
  57. 57.
    McKeen CR, Brigham KL, Bowers RE, Harris TR (1978) Pulmonary vascular effects of fat emulsion infusion in unanesthetized sheep. Prevention by indomethacin. J Clin Invest 61(5):1291–1297. doi: 10.1172/JCI109046 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Venus B, Smith RA, Patel C, Sandoval E (1989) Hemodynamic and gas exchange alterations during Intralipid infusion in patients with adult respiratory distress syndrome. Chest 95(6):1278–1281CrossRefPubMedGoogle Scholar
  59. 59.
    Mathru M, Dries DJ, Zecca A, Fareed J, Rooney MW, Rao TL (1991) Effect of fast vs slow intralipid infusion on gas exchange, pulmonary hemodynamics, and prostaglandin metabolism. Chest 99(2):426–429CrossRefPubMedGoogle Scholar
  60. 60.
    Khan SA, Ali A, Khan SA, Zahran SA, Damanhouri G, Azhar E, Qadri I (2014) Unraveling the complex relationship triad between lipids, obesity, and inflammation. Mediat Inflamm 2014:16. doi: 10.1155/2014/502749 CrossRefGoogle Scholar
  61. 61.
    Cox R Jr, Phillips O, Fukumoto J, Fukumoto I, Parthasarathy PT, Arias S, Cho Y, Lockey RF, Kolliputi N (2015) Enhanced resolution of hyperoxic acute lung injury as a result of aspirin triggered resolvin D1 treatment. Am J Respir Cell Mol Biol 53(3):422–435. doi: 10.1165/rcmb.2014-0339OC CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Takala J, Askanazi J, Weissman C, Lasala PA, Milic-Emili J, Elwyn DH, Kinney JM (1988) Changes in respiratory control induced by amino acid infusions. Crit Care Med 16(5):465–469CrossRefPubMedGoogle Scholar
  63. 63.
    Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, Thibault R, Pichard C (2013) Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet 381(9864):385–393. doi: 10.1016/S0140-6736(12)61351-8 CrossRefPubMedGoogle Scholar
  64. 64.
    Singer P, Anbar R, Cohen J, Shapiro H, Shalita-Chesner M, Lev S, Grozovski E, Theilla M, Frishman S, Madar Z (2011) The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med 37(4):601–609. doi: 10.1007/s00134-011-2146-z CrossRefPubMedGoogle Scholar
  65. 65.
    Petros S, Horbach M, Seidel F, Weidhase L (2016) Hypocaloric vs normocaloric nutrition in critically ill patients: a prospective randomized pilot trial. JPEN J Parenter Enteral Nutr 40(2):242–249. doi: 10.1177/0148607114528980 CrossRefPubMedGoogle Scholar
  66. 66.
    Wolfe RR, O'Donnell TF Jr, Stone MD, Richmand DA, Burke JF (1980) Investigation of factors determining the optimal glucose infusion rate in total parenteral nutrition. Metab Clin Exp 29(9):892–900CrossRefPubMedGoogle Scholar
  67. 67.
    Radrizzani D, Iapichino G (1998) Nutrition and lung function in the critically ill patient. Clin Nutr 17(1):7–10CrossRefPubMedGoogle Scholar
  68. 68.
    Iapichino G (1989) Nutrition in respiratory failure. Intensive Care Med 15(8):483–485CrossRefPubMedGoogle Scholar
  69. 69.
    Askanazi J, Rosenbaum SH, Michelsen CB, Elwyn DH, Hyman AI, Kinney JM (1980) Increased body temperature secondary to total parenteral nutrition. Crit Care Med 8(12):736–737CrossRefPubMedGoogle Scholar
  70. 70.
    Iapichino G, Gattinoni L, Solca M, Radrizzani D, Zucchetti M, Langer M, Vesconi S (1982) Protein sparing and protein replacement in acutely injured patients during TPN with and without amino acid supply. Intensive Care Med 8(1):25–31CrossRefPubMedGoogle Scholar
  71. 71.
    Talpers SS, Romberger DJ, Bunce SB, Pingleton SK (1992) Nutritionally associated increased carbon dioxide production. Excess total calories vs high proportion of carbohydrate calories. Chest 102(2):551–555CrossRefPubMedGoogle Scholar
  72. 72.
    Heymsfield SB, Head CA, McManus CB 3rd, Seitz S, Staton GW, Grossman GD (1984) Respiratory, cardiovascular, and metabolic effects of enteral hyperalimentation: influence of formula dose and composition. Am J Clin Nutr 40(1):116–130PubMedGoogle Scholar
  73. 73.
    Heymsfield SB, Hill JO, Evert M, Casper K, DiGirolamo M (1987) Energy expenditure during continuous intragastric infusion of fuel. Am J Clin Nutr 45(3):526–533PubMedGoogle Scholar
  74. 74.
    Radrizzani D, Iapichino G, Colombo A, Codazzi D, Pasetti G, Ronzoni G, Savioli M (1995) Effect of infusion and withdrawal of glucose and insulin on gas exchange in injured ventilated patients. J Crit Care 10(1):15–20CrossRefPubMedGoogle Scholar
  75. 75.
    Suchner U, Katz DP, Furst P, Beck K, Felbinger TW, Senftleben U, Thiel M, Goetz AE, Peter K (2001) Effects of intravenous fat emulsions on lung function in patients with acute respiratory distress syndrome or sepsis. Crit Care Med 29(8):1569–1574CrossRefPubMedGoogle Scholar
  76. 76.
    Pacht ER, DeMichele SJ, Nelson JL, Hart J, Wennberg AK, Gadek JE (2003) Enteral nutrition with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants reduces alveolar inflammatory mediators and protein influx in patients with acute respiratory distress syndrome. Crit Care Med 31(2):491–500. doi: 10.1097/01.CCM.0000049952.96496.3E CrossRefPubMedGoogle Scholar
  77. 77.
    Heller AR, Rossler S, Litz RJ, Stehr SN, Heller SC, Koch R, Koch T (2006) Omega-3 fatty acids improve the diagnosis-related clinical outcome. Crit Care Med 34(4):972–979. doi: 10.1097/01.CCM.0000206309.83570.45 CrossRefPubMedGoogle Scholar
  78. 78.
    Pontes-Arruda A, Aragao AM, Albuquerque JD (2006) Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med 34(9):2325–2333. doi: 10.1097/01.CCM.0000234033.65657.B6 CrossRefPubMedGoogle Scholar
  79. 79.
    Pontes-Arruda A, Demichele S, Seth A, Singer P (2008) The use of an inflammation-modulating diet in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of outcome data. JPEN J Parenter Enteral Nutr 32(6):596–605. doi: 10.1177/0148607108324203 CrossRefPubMedGoogle Scholar
  80. 80.
    DeMichele SJ, Wood SM, Wennberg AK (2006) A nutritional strategy to improve oxygenation and decrease morbidity in patients who have acute respiratory distress syndrome. Respir Care Clin N Am 12(4):547–566 . doi: 10.1016/j.rcc.2006.09.006viPubMedGoogle Scholar
  81. 81.
    Mizock BA, DeMichele SJ (2004) The acute respiratory distress syndrome: role of nutritional modulation of inflammation through dietary lipids. Nutr Clin Pract Off Publ Am Soc Parenteral Enteral Nutrition 19(6):563–574CrossRefGoogle Scholar
  82. 82.
    Gadek JE, DeMichele SJ, Karlstad MD, Pacht ER, Donahoe M, Albertson TE, Van Hoozen C, Wennberg AK, Nelson JL, Noursalehi M (1999) Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med 27(8):1409–1420CrossRefPubMedGoogle Scholar
  83. 83.
    Singer P, Theilla M, Fisher H, Gibstein L, Grozovski E, Cohen J (2006) Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med 34(4):1033–1038. doi: 10.1097/01.CCM.0000206111.23629.0A CrossRefPubMedGoogle Scholar
  84. 84.
    Grau-Carmona T, Moran-Garcia V, Garcia-de-Lorenzo A, Heras-de-la-Calle G, Quesada-Bellver B, Lopez-Martinez J, Gonzalez-Fernandez C, Montejo-Gonzalez JC, Blesa-Malpica A, Albert-Bonamusa I, Bonet-Saris A, Herrero-Meseguer JI, Mesejo A, Acosta J (2011) Effect of an enteral diet enriched with eicosapentaenoic acid, gamma-linolenic acid and anti-oxidants on the outcome of mechanically ventilated, critically ill, septic patients. Clin Nutr 30(5):578–584. doi: 10.1016/j.clnu.2011.03.004 CrossRefPubMedGoogle Scholar
  85. 85.
    Rice TW, Wheeler AP, Thompson BT, deBoisblanc BP, Steingrub J, Rock P (2011) Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA 306(14):1574–1581. doi: 10.1001/jama.2011.1435 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Stapleton RD, Martin TR, Weiss NS, Crowley JJ, Gundel SJ, Nathens AB, Akhtar SR, Ruzinski JT, Caldwell E, Curtis JR, Heyland DK, Watkins TR, Parsons PE, Martin JM, Wurfel MM, Hallstrand TS, Sims KA, Neff MJ (2011) A phase II randomized placebo-controlled trial of omega-3 fatty acids for the treatment of acute lung injury. Crit Care Med 39(7):1655–1662. doi: 10.1097/CCM.0b013e318218669d CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Li C, Bo L, Liu W, Lu X, Jin F (2015) Enteral immunomodulatory diet (omega-3 fatty acid, gamma-linolenic acid and antioxidant supplementation) for acute lung injury and acute respiratory distress syndrome: an updated systematic review and meta-analysis. Nutrients 7(7):5572–5585. doi: 10.3390/nu7075239 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Pichard C, Oshima T, Berger MM (2015) Energy deficit is clinically relevant for critically ill patients: yes. Intensive Care Med 41(2):335–338. doi: 10.1007/s00134-014-3597-9 CrossRefPubMedGoogle Scholar
  89. 89.
    Cigada M, Corbella D, Mistraletti G, Forster CR, Tommasino C, Morabito A, Iapichino G (2008) Conscious sedation in the critically ill ventilated patient. J Crit Care 23(3):349–353. doi: 10.1016/j.jcrc.2007.04.003 CrossRefPubMedGoogle Scholar
  90. 90.
    Iapichino G, Radrizzani D, Solca M, Pesenti A, Gattinoni L, Ferro A, Leoni L, Langer M, Vesconi S, Damia G (1984) The main determinants of nitrogen balance during total parenteral nutrition in critically ill injured patients. Intensive Care Med 10(5):251–254CrossRefPubMedGoogle Scholar
  91. 91.
    Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354(24):2564–2575. doi: 10.1056/NEJMoa062200 CrossRefPubMedGoogle Scholar
  92. 92.
    Iapichino G, Pesenti A, Radrizzani D, Solca M, Pelizzola A, Gattinoni L (1983) Nutritional support to long-term anesthetized and curarized patients under extracorporeal respiratory assist for terminal pulmonary failure. JPEN J Parenter Enteral Nutr 7(1):50–54CrossRefPubMedGoogle Scholar
  93. 93.
    Ferrie S, Herkes R, Forrest P (2013) Nutrition support during extracorporeal membrane oxygenation (ECMO) in adults: a retrospective audit of 86 patients. Intensive Care Med 39(11):1989–1994. doi: 10.1007/s00134-013-3053-2 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Michele Umbrello
    • 1
  • Danilo Radrizzani
    • 2
  • Gaetano Iapichino
    • 1
    • 3
    • 4
  1. 1.Unità Operativa di Anestesia e RianimazioneOspedaliera San Paolo-Polo Universitario, ASST Santi Paolo e CarloMilanItaly
  2. 2.Unità Operativa di Anestesia e RianimazioneOspedale Nuovo di Legnano, ASST Ovest MilaneseLegnanoItaly
  3. 3.Unità Operativa di Anestesia e RianimazioneOspedaliera San Paolo-Polo Universitario, ASST Santi Paolo e CarloMilanItaly
  4. 4.Dipartimento di Fisiopatologia Medico-Chirurgica e dei TrapiantiUniversità degli Studi di MilanoMilanItaly

Personalised recommendations