Advertisement

On Quantum Computation, Anyons, and Categories

  • Andreas BlassEmail author
  • Yuri Gurevich
Chapter
Part of the Outstanding Contributions to Logic book series (OCTR, volume 10)

Abstract

We explain the use of category theory in describing certain sorts of anyons . Yoneda’s lemma leads to a simplification of that description. For the particular case of Fibonacci anyons , we also exhibit some calculations that seem to be known to the experts but not explicit in the literature.

Keywords

Anyon model Fibonacci anyons Quantum computing Categories Yoneda Lemma Mathematical foundations 

References

  1. 1.
    Bagchi, B., & Misra, G. (2000). A note on the multipliers and projective representations of semi-simple Lie groups. Sankhyā: The Indian Journal of Statistics, 62, 425–432.Google Scholar
  2. 2.
    Bonderson, P. H. (2007). Non-abelian anyons and interferometry. Ph.D. thesis, California Institute of Technology.Google Scholar
  3. 3.
    Freyd, P. (1964). Abelian categories: An introduction to the theory of functors. Harper & Row.Google Scholar
  4. 4.
    Giulini, D. (2007). Superselection rules. http://arxiv.org/pdf/0710.1516.pdf.
  5. 5.
    Kauffman, L., & Lomonaco, S. (2010). Topological quantum information theory. In S. Lomonaco (Ed.), Quantum information science and its contribution to mathematics. Proceedings of symposia in pure mathematics (Vol. 68, pp. 103–177). American Mathematical Society.Google Scholar
  6. 6.
    Kitaev, A. (2003). Fault-tolerant quantum computation by anyons. Annals of Physics, 303, 2–30. http://arxiv.org/abs/quant-ph/9707021.
  7. 7.
    Mac Lane, S. (1971). Categories for the working mathematician. Graduate Texts in Mathematics 5. Springer.Google Scholar
  8. 8.
    Nayak, C., Simon, S., Stern, A., Freedman, M., & Das Sarma, S. (2008). Non-abelian anyons and topological quantum computation. Reviews of Modern Physics, 80, 1083–1159.Google Scholar
  9. 9.
    Panangaden, P., & Paquette, É. O. (2011). A categorical presentation of quantum computation with anyons, Chapter 15. In B. Coecke (Ed.), New structures for physics. Lecture Notes in Physics (Vol. 813, pp. 983–1025). Springer.Google Scholar
  10. 10.
    Raghunathan, M. S. (1994). Universal central extensions. Reviews of Modern Physics, 6, 207–225.Google Scholar
  11. 11.
    Wang, Z. (2010). Topological quantum computation. CBMS Regional Conference Series in Mathematics (Vol. 112). American Mathematical Society.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of MichiganAnn ArborUSA
  2. 2.Microsoft ResearchRedmondUSA

Personalised recommendations