DNA Barcoding: A Tool to Assess and Conserve Marine Biodiversity

  • Sudakshina Ghosh
  • Biswabandhu Bankura
  • Madhusudan DasEmail author


Accurate Species diagnosis is the key element for biodiversity studies and conservation planning. Conventionally, morphological characters are used to identify a species. But, this approach needs a thorough expertise in identifying the external features which often leads to narrowing down of specialization with regard to ascertaining a species within a limited group of taxa. The approach may be particularly valuable for species identification of organisms that are rare, fragile, and/or small, especially when morphological identification is problematic and errors are likely due to simple or evolutionarily conserved body plans. However, each time a new technique has been introduced in science it was accompanied by some debate and distress, and DNA barcoding was no exception. Therefore, more collaborative efforts are needed to explore the potentialities of DNA barcoding in proper species identification across all taxa. At the same time, we need to set a threshold of the genetic variation in species delimitation to find out the cryptic species. It is also an important point to know that the benefits of DNA barcoding are not restricted to taxonomic or systematic research only. The discovery of high-throughput sequencing technologies are going to change the dimension of these techniques in the years to come.


Cryptic Species Rosmarinic Acid Mangrove Ecosystem Marine Biodiversity Beaked Whale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahyong ST, Lowry JK, Alonso M, Bamber RN, Boxshall GA, Castro P et al (2011) Subphylum Crustacea Brünnich, 1772. Zootaxa 3148:165–191Google Scholar
  2. Aliabadian M, Beentjes KK, Roselaar CS (Kees), Brandwijk HV, Nijman V, Vonk R (2013) DNA barcoding of Dutch birds. Zookeys 2013(365):25–48Google Scholar
  3. Allcock AL, Barratt I, Eleaume M, Linse K, Norman MD, Smith PJ et al (2011) Cryptic speciation and the circumpolarity debate: a case study on endemic Southern Ocean octopuses using the COI barcode of life. Deep Sea Res Part II Topical Stud Oceanogr 58(1–2):242–249CrossRefGoogle Scholar
  4. Barber P, Boyce SL (2006) Estimating diversity of Indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae. Proc R Soc Lond B 273:2053–2061CrossRefGoogle Scholar
  5. Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2000) Biogeography: a marine Wallace’s line? Nature 406:692–693PubMedCrossRefGoogle Scholar
  6. Barroso R, Klautau M, Solé-Cava A, Paiva P (2010) Eurythoe complanata (Polychaeta: Amphinomidae), the ‘cosmopolitan’ fireworm, consists of at least three cryptic species. Mar Biol 157:69–80Google Scholar
  7. Bertrand C, JanzenD H, Hallwachs W, Burns JM, Gibson JF, Shokralla S, Hajibabaei M (2014) Mitochondrial and nuclear phylogenetic analysis with Sanger and next–generation sequencing shows that, in Area de Conservacion Guanacaste, northwestern Costa Rica, the skipper butterfly named Urbanus belli (family Hesperiidae) comprises three morphologically cryptic species. BMC Evol Biol 14:153PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bhadury P, Austen MC (2010) Barcoding marine nematodes: an improved set of nematode 18S rRNA primers to overcome eukaryotic cointerference. Hydrobiologia 641:245–251CrossRefGoogle Scholar
  9. Bhadury P, Austen MC, Bilton DT, Lambshead PJD, Rogers AD, Smerdon GR (2006) Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Mar Ecol Prog Ser 320:1–9CrossRefGoogle Scholar
  10. Bottger-Schnack R, Machida R (2010) Comparison of morphological and molecular traits for species identification and taxonomic grouping of oncaeid copepods. Hydrobiologia 2010:1–15Google Scholar
  11. Bracken-Grissom HD, Felder DL, Vollmer NL, Martin JW, Crandall KA (2012) Phylogenetics links monster larvae to deep-sea shrimp. Ecol Evol 2:2367–2373PubMedPubMedCentralCrossRefGoogle Scholar
  12. Briggs JC (1994) Species-diversity—land and sea compared. Syst Biol 43:130–135CrossRefGoogle Scholar
  13. Bucklin A, Frost BW (2009) Morphological and molecular phylogenetic analysis of evolutionary lineages within Clausocalanus (Copepoda: Calanoida). J Crust Biol 29:111–120CrossRefGoogle Scholar
  14. Bucklin A, Frost BW, Bradford-Grieve J, Allen LD, Copley NJ (2003) Molecular systematic and phylogenetic assesment of 34 calanoid copepod species of the Calanidae and Clausocalanidae. Mar Biol 142:333–343Google Scholar
  15. Bucklin A, Wiebe PH, Smolenack SB, Copley NJ, Beaudet JG, Bonner KG et al (2007) DNA barcodes for species identification of euphausiids (Euphausiacea, Crustacea). J Plankton Res 29:483–493CrossRefGoogle Scholar
  16. Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoa. Ann Rev Mar Sci 3:471–508PubMedCrossRefGoogle Scholar
  17. Calderon I, Garrabou J, Aurelle D (2006) Evaluation of the utility of COI and ITS markers as tools for population genetic studies of temperate gorgonians. J Exp Mar Biol Ecol 336:184–197CrossRefGoogle Scholar
  18. Cardenas P, Menegola C, Rapp HT, Diaz MC (2009) Morphological description and DNA barcodes of shallow-water Tetractinellida (Porifera: Demospongiae) from Bocas del Toro, Panama, with description of a new species. Zootaxa 2009:1–39Google Scholar
  19. Carstensen D, Laudien J, Leese F, Arntz W, Held C (2009) Genetic variability, shell and sperm morphology suggest that the surf clams Donax marincovichi and D. obesulus are one species. J Mollus Stud 75:381–390CrossRefGoogle Scholar
  20. Clarkston BE, Saunders GW (2010) A comparison of two DNA barcode markers for species discrimination in the red algal family Kallymeniaceae (Gigartinales, Florideophyceae), with a description of Euthoratimburtonii sp. Botany 88:119–131CrossRefGoogle Scholar
  21. Costanza R, d’Arge R, de Groot R, Farberparallel S, Grasso M, Hannon B et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260Google Scholar
  22. Costion C, Ford A, Cross H, Crayn D, Harrington M, Lowe A (2011) Plant DNA barcodes can accurately estimate species richness in poorly known floras. PLoS ONE 6(11):e26841PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dalebout ML, Mead JG, Baker CS, Baker AN, Helden AL (2002) A new species of beaked whale Mesoplodon perrini sp. n. (Cetacea: Ziphiidae) discovered through phylogenetic analyses of mitochondrial DNA sequences. Mar Mamm Sci 18:577–608Google Scholar
  24. Dalebout ML, Baker CS, Anderson RC, Best PB, Cockcroft VG, Hinsz HL et al (2003) Appearance, distribution, and genetic distinctiveness of longman’s beaked whale, Indopacetus pacificus. Mar Mamm Sci 19:421–461CrossRefGoogle Scholar
  25. Daru BH, Yessoufou K, Mankga LT, Davies TJ (2013) A global trend towards the loss of evolutionarily unique species in mangrove ecosystems. PLoS ONE 8(6):e66686PubMedPubMedCentralCrossRefGoogle Scholar
  26. Derycke S, Ley PD, Ley ITD, Holovachov O, Rigaux A, Moens T (2010) Linking DNA sequences to morphology: cryptic diversity and population genetic structure in the marine nematode Thoracostoma trachygaster (Nematoda, Leptosomatidae). Zool Scr 39(3):276–289CrossRefGoogle Scholar
  27. Erpenbeck D, Hooper JNA, Worheide G (2006) CO1 phylogenies in diploblasts and the ‘Barcoding of Life’—Are we sequencing a suboptimal partition? Mol Ecol Notes 6:550–553CrossRefGoogle Scholar
  28. Erseus C, Kvist S (2007) COI variation in Scandinavian marine species of Tubificoides (Annelida: Clitellata: Tubificidae). J Mar Biol Assoc UK 87:1121–1126CrossRefGoogle Scholar
  29. Feller KD, Cronin TW (2016) Spectral absorption of visual pigments in stomatopod larval photoreceptors. J Comp Phys A. doi: 10.1007/s00359-015-1063-y
  30. Feng Y, Li Q, Kong L, Zheng X (2011) DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Mol Biol Rep 38(1):291–299PubMedCrossRefGoogle Scholar
  31. Field CB, Osborn JG, Hoffman LL, Polsenberg JF, Ackerly DD, Berry JA et al (1998) Mangrove biodiversity and ecosystem function. Global Ecol Biogeog Let 7:3–14CrossRefGoogle Scholar
  32. Floyd RM, Rogers AD, Lambshead PJD, Smith CR (2005) Nematode-specific PCR primers for the 18S small subunit rRNA gene. Mol Ecol Notes 5:611–612CrossRefGoogle Scholar
  33. Folino-Rorem N, Darling J, D’Ausilio C (2009) Genetic analysis reveals multiple cryptic invasive species of the hydrozoan genus Cordylophora. Biol Invasions 11:1869–1882CrossRefGoogle Scholar
  34. García R, Erin KK, Charles LS, John KW and Terry LE (2013) Using a comprehensive DNA barcode library to detect novel egg and larval host plant associations in a Cephaloleia rolled-leaf beetle (Coleoptera: Chrysomelidae). Biol J Linn Soc 110:189–198Google Scholar
  35. Gomez A, Hughes RN, Wright PJ, Carvalho GR, Lunt DH (2007a) Mitochondrial DNA phylogeography and mating compatibility reveal marked genetic structuring and speciation in the NE Atlantic bryozoan Celleporella hyalina. Mol Ecol 16:2173–88Google Scholar
  36. Gomez-Campo C (2007b) Assessing the contribution of genebanks: the case of the UPM seed bank in Madrid. Plant Genet Resour Newslett 151:40–49Google Scholar
  37. Govindarajan AF, Boero F, Halanych KM (2006) Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria). Mol Phylogen Evol 38:820–834CrossRefGoogle Scholar
  38. Gray JS (1997) Marine biodiversity: patterns, threats and conservationneeds. Biodiv Conserv 6:153–175CrossRefGoogle Scholar
  39. Hamsher SE, Saunders GW (2014) A floristic survey of marine tube-forming diatoms reveals unexpected diversity and extensive co-habitation among genetic lines of the Berkeleya rutilans complex (Bacillariophyceae). Eur J Phycol 49(1):47–59CrossRefGoogle Scholar
  40. Hardy MS, Carr CM, Hardman M, Steinke D, Corstorphine E, Mah C (2011) Biodiversity and phylogeography of Arctic marine fauna: insights from molecular tools. Mar Biodivers 41(1):195–210CrossRefGoogle Scholar
  41. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004a) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004b) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663CrossRefGoogle Scholar
  43. Heim I, Nickel M, Brummer F (2007) Molecular markers for species discrimination in poriferans: a case study on species of the genus Aplysina. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability, vol 28. Rio de Janeiro, Brazil, pp 361–371Google Scholar
  44. Helgen LE, Rouse GW (2006) Species delimitation and distribution in Aporometra (Crinoidea: Echinodermata): endemic Australian featherstars. Invertebr Syst 20:395–414CrossRefGoogle Scholar
  45. Hellberg M (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hill RS, Allen LD, Bucklin A (2001) Multiplexed species-specific PCR protocol to discriminate four N. Atlantic Calanus species, with amtCOI gene tree for ten Calanus species. Mar Biol 139:279–287CrossRefGoogle Scholar
  47. Hirose M, Osawa M, Hirose E (2010) DNA barcoding of hermit crabs of genus Clibanarius Dana, 1852 (Anomura: Diogenidae) in the Ryukyu Islands, southwestern Japan. Zootaxa 2414:59–66Google Scholar
  48. Hoareau TB, Boissin E (2010) Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata. Mol Ecol Resour 10(6):960–967PubMedCrossRefGoogle Scholar
  49. Holmes BH, Steinke D, Ward RD (2009) Identification of shark and ray fins using DNA barcoding. Fish Res 95:280–288CrossRefGoogle Scholar
  50. Huang D, Meier R, Todd PA, Chou LM (2008) Slow mitochondrial COI sequence evolution at the base of the metazoan tree and its implications for DNA barcoding. J Mol Evol 66:167–174PubMedCrossRefGoogle Scholar
  51. Hubert N, Delrieu-Trottin E, Irisson J-O, Meyer C, Planes S (2010) Identifying coral reef fish larvae through DNA barcoding: a test case with the families Acanthuridae and Holocentridae. Mol Phylogen Evol 55:1195–1203CrossRefGoogle Scholar
  52. Hunt B, Strugnell J, Bednarsek N, Linse K, Nelson RJ, Pakhomov E et al (2010) Poles Apart: The “bipolar” pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic oceans. PLoS ONE 5(3):e9835PubMedPubMedCentralCrossRefGoogle Scholar
  53. Jennings RM, Bucklin A, Ossenbrugger H, Hopcroft RR (2010a) Species diversity of planktonic gastropods (Pteropoda and Heteropoda) from six ocean regions based on DNA barcode analysis. Deep Sea Res Part II Topical Stud Oceanogr 57(24–26):2199–2210CrossRefGoogle Scholar
  54. Jennings RM, Bucklin A, Pierrot-Bults A (2010b) Barcoding of arrow worms (phylum Chaetognatha) from three oceans: genetic diversity and evolution within an enigmatic phylum. PLoS ONE 5(4):e9949PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kathryn FD, Thomas CW (2016) Spectral absorption of visual pigments in stomatopod larval photoreceptors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 202:215–223Google Scholar
  56. Kelly RP, Sarkar IN, Eernisse DJ, DeSalle ROB (2007) DNA barcoding using chitons (genus Mopalia). Mol Ecol Notes 7:177–183CrossRefGoogle Scholar
  57. Kerr K, Stoeckle M, Dove C, Weigt L, Francis C, Hebert PD (2007) Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 7:535–543PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kim MS, Yang MY, Cho GY (2010) Applying DNA barcoding to Korean Gracilariaceae (Rhodophyta) Cryptogamie. Algologie 31(4):387–401Google Scholar
  59. Krabbe K, Leese F, Mayer C, Tollrian R, Held C (2010) Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biol 33:281–292CrossRefGoogle Scholar
  60. Kress WJ, García-Robledo C, Uriarte M, Erickson DL (2015) DNA barcodes for ecology, evolution, and conservation. Trends Ecol Evol 30(1):25–35PubMedCrossRefGoogle Scholar
  61. Krug PJ, Ellingson RA, Burton R, Valdes A (2007) A new Poecilogonous species of sea slug (Opisthobranchia: Sacoglossa) from California: comparison with the planktotrophic congener Alderia modesta. J Mollus Stud 73:29–38CrossRefGoogle Scholar
  62. Lambshead PJD, Tietjen J, Moncrieff CB, Ferrero TJ (2001) North Atlantic latitudinal diversity patterns in deep-sea marine nematode data: a reply to Rex et al. Mar Ecol Prog Ser 210:299–301Google Scholar
  63. Last PR, White WT, Pogonoski JJ (2007) Descriptions of new dogfishes of the genus squalus (Squaloidea: Squalidae). CSIRO, HobartGoogle Scholar
  64. Les DH, Moody ML, Jacobs SWL, Bayer RJ (2002) Systematics of seagrasses (Zosteraceae) in Australia and New Zealand. Syst Bot 27:468–484Google Scholar
  65. Lorion J, Duperron Sb, Gros O, Cruaud C, Samadi S (2009) Several deep-sea mussels and their associated symbionts are able to live both on wood and on whale falls. Proc R Soc Lond B 276:177–185CrossRefGoogle Scholar
  66. Lucas C, Thangaradjou T, Papenbrock J (2012) Development of a DNA barcoding system for seagrasses: successful but not simple. PLoS ONE 7(1):e29987PubMedPubMedCentralCrossRefGoogle Scholar
  67. Luttikhuizen PC, Dekker R (2010) Pseudo-cryptic species Arenicola defodiens and Arenicola marina (Polychaeta: Arenicolidae) in Wadden Sea, North Sea and Skagerrak: morphological and molecular variation. J Sea Res 63:17–23CrossRefGoogle Scholar
  68. Machida R, Miya M, Nishida M, Nishida S (2006) Molecular phylogeny and evolution of the pelagic copepod genus Neocalanus (Crustacea: Copepoda). Mar Biol 148:1071–1079CrossRefGoogle Scholar
  69. Mikkelsen NT, Schander C, Willassen E (2007) Local scale DNA barcoding of bivalves (Mollusca): a case study. Zool Scr 36:455–463CrossRefGoogle Scholar
  70. Mitra A, Banerjee K (2005) Living resources of the sea: focus Indian Sundarbans. In: Banerjee Col SR (ed) WWF India. Canning Field Office, 24 Parganas (S), 96 ppGoogle Scholar
  71. Miyamoto H, Machida R, Nishida S (2010) Genetic diversity and cryptic speciation of the deep sea chaetognath Caecosagitta macrocephala. Deep Sea Res Part II Topical Stud Oceanogr 57(24–26):2211–2219CrossRefGoogle Scholar
  72. Molnar JL, Gamboa RL, Revenga C (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492CrossRefGoogle Scholar
  73. Moura CJ, Harris DJ, Cunha MR, Rogers AD (2008) DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zool Scr 31:93–108Google Scholar
  74. Naro-Maciel E, Reid B, Fitzsimmons NN, Le M, Desalle R, Amato G (2010) DNA barcodes for globally threatened marine turtles: a registry approach to documenting biodiversity. Mol Ecol Resour 10(2):252–263Google Scholar
  75. Naughton KM, O’Hara T (2009) Anew brooding species of the biscuit star Tosia (Echinodermata: Asteroidea: Goniasteridae), distinguished by molecular, morphological and larval characters. Invertebr Syst 23:348–366CrossRefGoogle Scholar
  76. Nelson JS, Hoddell RJ, Chou LM, Chan WK, Phang VPE (2000) Phylogeographic structure of false clownfish, Amphiprionocellaris, explained by sea level changes on the Sunda shelf. Mar Biol 137(4):727–736CrossRefGoogle Scholar
  77. Nuryanto A, Duryadi D, Soedharma D, Blohm D (2007) Molecular phylogeny of giant clams based on mitochondrial DNA Cytochrome C Oxidase I gene. Hayati 14:162–166Google Scholar
  78. Paine MA, McDowell JR, Graves JE (2008) Specific identification using COI sequence analysis of scombrid larvae collected off the Kona coast of Hawaii Island. Ichthyol Res 55:7–16CrossRefGoogle Scholar
  79. Pardo LM, Ampuero D, V´eliz D (2009) Using morphological and molecular tools to identify megalopae larvae collected in the field: the case of sympatric Cancer crabs. J Mar Biol Assoc UK 89:481–490CrossRefGoogle Scholar
  80. Park MH, Sim CJ, Baek J, Min GS (2007) Identification of genes suitable for DNA barcoding of morphologically indistinguishable Korean Halichondriidae sponges. Mol Cells 23:220–227PubMedGoogle Scholar
  81. Pegg GG, Sinclair B, Briskey L, Aspden WJ (2006) Mt DNA barcode identification of fish larvae in the southern Great Barrier Reef, Australia. Sci Mar 70:7–12Google Scholar
  82. Pinzon-Navarro S, Barrios H, Múrria C, Lyal CH, Vogler AP (2010) DNA-based taxonomy of larval stages reveals huge unknown species diversity in neotropical seed weevils (genus Conotrachelus): relevance to evolutionary ecology. Mol Phylogenet Evol 56(1):281–293PubMedCrossRefGoogle Scholar
  83. Poppe J, Sutcliffe P, Hooper JN, Worheide G, Erpenbeck D (2010) COI barcoding reveals new clades and radiation patterns of Indo-Pacific sponges of the family Irciniidae (Demospongiae: Dictyoceratida). PLoS ONE 5:e9950PubMedPubMedCentralCrossRefGoogle Scholar
  84. Puillandre N, Strong EE, Bouchet P, Boisselier M-C, Couloux A, Samadi S (2009) Identifying gastropod spawn from DNA barcodes: possible but not yet practicable. Mol Ecol Resour 9:1311–1321PubMedCrossRefGoogle Scholar
  85. Purvis A, Hector A (2000) Getting the measure of biodiversity. Nature 405:212–219PubMedCrossRefGoogle Scholar
  86. Pyle RL, Earle JL, Greene BD (2008) Five new species of the damselfish genus Chromis (Perciformes: Labroidei: Pomacentridae) from deep coral reefs in the tropical western Pacific. Zootaxa 1671:3–31Google Scholar
  87. Rao CAN (2004) Faunal diversity: estuarine ecosystem. Environ Prot Train Res Inst Environ Inform Syst (EPTRI-ENVIS) Newslett 3:8–11Google Scholar
  88. Remerie T, Bourgois T, Peelaers D, Vierstraete A, Vanfleteren J, Vanreusel A (2006) Phylogeographic patterns of the mysid Mesopodopsis slabberi (Crustacea, Mysida) in Western Europe: evidence for high molecular diversity and cryptic speciation. Mar Biol 149:465–481CrossRefGoogle Scholar
  89. Rice SA, Karl S, Rice KA (2008) The Polydora cornuta complex (Annelida: Polychaeta) contains populations that are reproductively isolated and genetically distinct. Invertebr Biol 127:45–64CrossRefGoogle Scholar
  90. Sanna D, Lai T, Francalacci P, Curini-Galletti M, Casu M (2009) Population structure of the Monocelis lineata (Proseriata, Monocelididae) species complex assessed by phylogenetic analysis of the mitochondrial Cytochrome c Oxidase subunit I (COI) gene. Genet Mol Biol 32:864–867PubMedPubMedCentralCrossRefGoogle Scholar
  91. Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R (2005) Towards writing the encyclopedia of life: an introduction to DNA barcoding. Philos Trans R Soc Lond B 360:1805–1811CrossRefGoogle Scholar
  92. Shank TM, Lutz RA, Vrijenhoek RC (2006) Molecular systematics of shrimp (Decapoda: Bresiliidae) from deep-sea hydrothermal vents, I: enigmatic “small orange” shrimp from the Mid-Atlantic Ridge are juvenile Rimicarisexoculata. Mol Mar Biol Biotech 7:88–96Google Scholar
  93. Shashank PR, Chakravarthy AK, Raju KR, Bhanu M (2014) DNA barcoding reveals the occurrence of cryptic species in host-associated population of Conogethes punctiferalis(Lepidopt B. R era: Crambidae). Appl Entomol Zool 49:283–295CrossRefGoogle Scholar
  94. Shearer TL, van Oppen MJH, Romano SL, Worheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–87Google Scholar
  95. Shearer TL, Coffroth MA (2008) DNA BARCODING: Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour 2:247–255Google Scholar
  96. Shih HT, Yeo DCJ, Ng PKL (2009) The collision of the Indian plate with Asia: molecular evidence for its impact on the phylogeny of freshwater crabs (Brachyura: Potamidae). Journal of Biogeography 36(4):703–719Google Scholar
  97. Silva I, Mesquita N, Paula J (2010) Lack of population structure in the fiddler crab Ucaannulipes along an East African latitudinal gradient: genetic and morphometric evidence. Mar Biol 157:1113–1126CrossRefGoogle Scholar
  98. Silva SE, de Abreu CB, Orlando TC, Wisniewski C, dos Santos-Wisniewski MJ, Hamsher SE et al (2014) A floristic survey of marine tube-forming diatoms reveals unexpected diversity and extensive co-habitation among genetic lines of the Berkeleyarutilans complex (Bacillariophyceae). Eur J Phycol 49:47–59CrossRefGoogle Scholar
  99. Sinniger F, Reimer JD, Pawlowski J (2008) Potential of DNA sequences to identify zoanthids (Cnidaria: Zoantharia). Zool Sci 25:1253–1260PubMedCrossRefGoogle Scholar
  100. Sinniger F, Reimer JD, Pawlowski J (2010) The Parazoanthidae (Hexacorallia: Zoantharia) DNA taxonomy: description of two new genera. Mar Biodivers 40:57–70CrossRefGoogle Scholar
  101. Smith PJ, McVeagh SM, Steinke D (2008a) DNA barcoding for the identification of smoked fish products. J Fish Biol 72(2):464–471CrossRefGoogle Scholar
  102. Smith PJ, Steinke D, McVeagh MS, Stewart AL, Struthers CD, Roberts CD (2008b) Molecular analysis of Southern Ocean skates (Bathyraja) reveals a new species of Antarctic skate. J Fish Biol 73:1170–1182CrossRefGoogle Scholar
  103. Smith MA, Fernandez-Triana J, Roughley R, Hebert PD (2009) DNA barcode accumulation curves for understudied taxa and areas. Mol Ecol Resour 9:208–216PubMedCrossRefGoogle Scholar
  104. Smith AM, Fernández-Triana JL, Eveleigh E, Gómez J, Guclu C, Hallwachs W et al (2012) DNA barcoding and the taxonomy of Microgastrinae wasps (Hymenoptera, Braconidae): impacts after 8 years and nearly 20 000 sequences. Mol Ecol Resour 13(2):168–176CrossRefGoogle Scholar
  105. Spencer HG, Waters JM, Eichhorst TE (2007) Taxonomy and nomenclature of black nerites (Gastropoda: Neritimorpha: Nerita) from the South Pacific. Invertebr Syst 21:229–237CrossRefGoogle Scholar
  106. Stern RF, Horak A, Andrew RL (2010) Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS ONE 5(11):e13991PubMedPubMedCentralCrossRefGoogle Scholar
  107. Tang RWK, Yau C, NG W-C (2010) Identification of stomatopod larvae (Crustacea: Stomatopoda) from Hong Kong waters using DNA barcodes. Mol Ecol Resour 10:439–448PubMedCrossRefGoogle Scholar
  108. Teske PR, Barker NP, McQuaid CD (2007) Lack of genetic differentiation among four sympatric southeast african intertidal limpets (Siphonariidae): phenotypic plasticity in a single species? J Molluscan Stud 73:223–228CrossRefGoogle Scholar
  109. Torres AP, Palero F, dos Santos A, Abello P, Blanco E, Bone A, Guerao G (2014) Larval stages of the deep-sea lobster Polycheles typhlops (Decapoda, Polychelidae) identified by DNA analysis: morphology, systematic, distribution and ecology. Helgol Mar Res 68:379–397CrossRefGoogle Scholar
  110. Trivedi S, Chaudhuri A, Mitra A, Gupta A, Singh B, Choudhury A (1994) A case study on the loss of biodiversity during prawn seed collection from the Hooghly estuary, India. In: Proceedings of national convention on environment of India – challenges for the 21st century. Institution of Public Health Engineers, Calcutta (India), pp T-IX/32–T-IX/36Google Scholar
  111. Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2015) Molecular phylogeny of oysters belonging to the genus Crassostrea through DNA barcoding. J Entomol Zool Stud 3(1):21–26Google Scholar
  112. Trivedi S, Aloufi AA, Rehman H, Saggu S, Ghosh SK (2016a) DNA barcoding: Tool for assessing species identification in reptilia. J Entomol Zool Stud 4(1):332–337Google Scholar
  113. Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2016b) Role of DNA barcoding in marine biodiversity assessment and conservation: an update. Saudi J Biolog Sci.
  114. Tsang L, Chan B, Ma K, Hsu CH, Chu K (2007) Lack of mtDNA and morphological differentiation between two acorn barnacles Tetraclita japonica and T. formosana differing in parietes colours and geographical distribution. Mar Biol 151:147–155CrossRefGoogle Scholar
  115. Tsang LM, Chan BK, Ma KY, Chu KH (2008) Genetic differentiation, hybridization and adaptive divergence in two subspecies of the acorn barnacle Tetraclita japonica in the northwestern Pacific. Mol Ecol 17(18):4151–4163PubMedCrossRefGoogle Scholar
  116. Tsang LM, Chan BKK, Shih F-L, Chu KH, Chen CA (2009) Host-associated speciation in the coral barnacle Wanellamilleporae (Cirripedia: Pyrgomatidae) inhabiting the Millepora coral. Mol Ecol 18:1463–1475PubMedCrossRefGoogle Scholar
  117. Uchimura M, Faye EJ, Shimada S, Inoue T, Nakamura Y (2008) A reassessment of Halophila species (Hydrocharitaceae) diversity with special reference to Japanese representatives. Bot Mar 51:258–268Google Scholar
  118. Unal E, Frost BW, Armbrust V, Kideys AE (2006) Phylogeography of Calanus helgolandicus and the Black Sea copepod Calanus euxinus, with notes on Pseudocalanus elongatus (Copepoda, Calanoida). Deep Sea R II 53:1961–1975CrossRefGoogle Scholar
  119. Undheim EA, Norman JA, Thoen HH, Fry BG (2010) Genetic identification of Southern Ocean octopod samples using mtCOI. C R Biol 333(5):395–404PubMedCrossRefGoogle Scholar
  120. Uthicke S, Byrne M, Conand C (2010) Genetic barcoding of commercial Beche-de-mer species (Echinodermata: Holothuroidea). Mol Ecol Resour 10:634–646PubMedCrossRefGoogle Scholar
  121. van Helden AL, Baker AN, Dalebout ML, Reyes JC, Waerebeek KV, Baker CS (2002) Resurrection of Mesoplodon traversii (Gray 1874), senior synonym of M. bahamondi Reyes, Van Waerebeek, Cárdenas and Yañez, 1995 (Cetacea: Ziphiidae). Mar Mamm Sci 18:609–621Google Scholar
  122. Vargas SM, Araujo FCF, Santos FR (2009) DNA barcoding of Brazilian sea turtles (Testudines). Genet Mol Biol 32:608–612PubMedPubMedCentralCrossRefGoogle Scholar
  123. Victor BC (2007) Coryphopterus kuna, a new goby (Perciformes: Gobiidae: Gobiinae) from the western Caribbean, with the identification of the late larval stage and an estimate of the pelagic larval duration. Zootaxa 1526:51–61Google Scholar
  124. Victor BC (2008) Redescription of Coryphopterus tortugae (Jordan) and a new allied species Coryphopterus bol (Perciformes: Gobiidae: Gobiinae) from the tropical western Atlantic Ocean. J Ocean Sci Found 1:1–19Google Scholar
  125. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B 360:1847–1857CrossRefGoogle Scholar
  126. Ward RD, Holmes BH, White WT, Last PR (2008) DNA Barcoding Australasian chondrichthyans: results and potential uses in conservation. Mar Freshwat Res 59:57–71CrossRefGoogle Scholar
  127. Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 73:1–28Google Scholar
  128. Waycott M, Freshwater DW, York RA, Calladine A, Kenworthy WJ (2002) Evolutionary trends in the seagrass genus Halophila (thouars): Insights from molecular phylogeny. Bull Mar Sci 71(3):1299–1308Google Scholar
  129. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106(30):12377–12381PubMedPubMedCentralCrossRefGoogle Scholar
  130. Wilson N, Hunter R, Lockhart S, Halanych K (2007) Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152:895–904CrossRefGoogle Scholar
  131. Winterbottom R, Hanner RH, Burridge M, Zur M (2014) A cornucopia of cryptic species: a DNA barcode analysis of the gobiid fish genus Trimma (Percomorpha, Gobiiformes). Zookeys 381:79–111PubMedCrossRefGoogle Scholar
  132. Worheide G (2006) Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar Biol 148:907–912Google Scholar
  133. Xiaobo Z, Shaojun P, Tifeng S (2013) Applications of three DNA barcodes in assorting intertidal red Macroalgal Flora in Qingdao. China. J Ocean Univ China 12(1):139–145CrossRefGoogle Scholar
  134. Zemlak TS, Ward RD, Connell AD, Holmes BH, Hebert PDN (2009) DNA barcoding reveals overlooked marine fishes. Mol Ecol Resour 9:237–242PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sudakshina Ghosh
    • 1
  • Biswabandhu Bankura
    • 2
  • Madhusudan Das
    • 2
    Email author
  1. 1.Department of ZoologySister Nibedita Government General Degree College for GirlsKolkataIndia
  2. 2.Department of ZoologyUniversity of CalcuttaKolkataIndia

Personalised recommendations