Advertisement

A Search for a Single DNA Barcode for Seagrasses of the World

  • Barnabas H. DaruEmail author
  • Kowiyou Yessoufou
Chapter

Abstract

It has recently been predicted that 91 % of marine species diversity is still unknown. Given that the future of marine habitats is threatened by anthropogenic activities and climate change, there is a pressing need to accelerate the documentation of marine biodiversity. The traditional morphological biodiversity screening could be aided by molecular approach such as DNA barcoding. In this study, we search for single DNA marker that could be used as DNA barcode for all seagrasses, irrespective of the lineages and the geographical locations. We found that the nuclear phyB followed by the plastid matK emerged as the best candidates. Although both markers have their own strengths and limitations, we suggest they could be prioritised in seagrass biodiversity assessment pending future improvements.

Keywords

DNA barcoding phyB matK Marine biodiversity Cymodoceaceae Ruppiaceae 

References

  1. Barnosky AD, Matzke N, Tomiya S, Wogan GOU, Swartz B, Quental TB et al (2011) Has the Earth’s sixth mass extinction already arrived? Nature 471:51–57PubMedCrossRefGoogle Scholar
  2. Briggs JC (2003) Marine centres of origin as evolutionary engines. J Biogeogr 30:1–18CrossRefGoogle Scholar
  3. Briggs JC (1994) Species-diversity—land and sea compared. Syst Biol 43:130–135CrossRefGoogle Scholar
  4. Brown SDJ, Collins RA, Boyer S, Lefort M-C, Malumbres-Olarte J, Vink CJ et al (2012) Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol Ecol Resour 12:562–565PubMedCrossRefGoogle Scholar
  5. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797PubMedCentralCrossRefGoogle Scholar
  6. Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madriñán S, Petersen G et al (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299Google Scholar
  7. Chelsky Budarf A, Burfeind DD, Loh WKW, Tibbetts IR (2011) Identification of seagrasses in the gut of a marine herbivorous fish using DNA barcoding and visual inspection techniques. J Fish Biol 79:112–121PubMedCrossRefGoogle Scholar
  8. Clement WL, Donoghue MJ (2012) Barcoding success as a function of phylogenetic relatedness in Viburnum, a clade of woody angiosperms. BMC Evol Biol 12:73PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cocheret de la Morinière E, Pollux BJA, Nagelkerken I, Hemminga MA, Huiskes AHL, van der Velde G (2003) Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar Ecol Prog Ser 246:279–289CrossRefGoogle Scholar
  10. Coyer JA, Hoarau G, Kuo J, Tronholm A, Veldsink J, Olsen JL (2013) Phylogeny and temporal divergence of the seagrass family Zosteraceae using one nuclear and three chloroplast loci. Syst Biodivers 11:271–291CrossRefGoogle Scholar
  11. Coyer JA, Miller KA, Engle JM, Veldsink JH, Stam WT, Olsen JL (2008) Eelgrass meadows in the California Channel Islands and adjacent coast reveal a mosaic of two species, evidence for introgression and variable clonality. Ann Bot 101:73–87PubMedCrossRefGoogle Scholar
  12. Daru BH, le Roux PC (2016) Marine protected areas are insufficient to conserve global marine plant diversity. Glob Ecol Biogeogr 25:324–334Google Scholar
  13. den Hartog C, Kuo J (2006) Taxonomy and biogeography of seagrasses. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 1–23Google Scholar
  14. den Hartog C (1970) Seagrasses of the world. North Holland, AmsterdamGoogle Scholar
  15. Duarte CM (2002) The future of seagrass meadows. Environ Conserv 29:192–206CrossRefGoogle Scholar
  16. Gere J, Yessoufou K, Daru BH, Mankga LT, Maurin O, van der Bank M (2013) Incorporating trnH-psbA to the core DNA barcodes improves significantly species discrimination within southern African Combretaceae. ZooKeys 365:127–147CrossRefGoogle Scholar
  17. Gouy M, Guindon S, Gascuel O (2010) SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224PubMedCrossRefGoogle Scholar
  18. Gray JS (1997) Marine biodiversity: patterns, threats and conservation needs. Biodivers Conserv 6:153–175CrossRefGoogle Scholar
  19. Green EP, Short FT (eds) (2003) World atlas of seagrasses. University of California Press, Los AngelesGoogle Scholar
  20. Hebert PD, Cywinska A, Ball SL, de Waard JR (2003) Biological identifications through DNA barcodes. Proc Biol Sci 270:313–321PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hebert PD, Stoeckle MY, Zemlak TS, Franci CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hemminga MA, Duarte CM (2000) Seagrass ecology: an introduction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. Hollingsworth ML, Clark A, Forrest LL, Richardson J, Pennington RT, Long DG et al (2009) Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Resour 9:439–457PubMedCrossRefGoogle Scholar
  24. Ito Y, Ohi-Toma T, Murata J, Tanaka N (2013) Comprehensive phylogenetic analyses of the Ruppiamaritima complex focusing on taxa from the Mediterranean. J Plant Res 126:753–762PubMedCrossRefGoogle Scholar
  25. Ito Y, Ohi-Toma T, Murata J, Tanaka N (2010) Hybridization and polyploidy of an aquatic plant, Ruppia (Ruppiaceae), inferred from plastid and nuclear DNA phylogenies. Am J Bot 97:1156–1167PubMedGoogle Scholar
  26. Ito Y, Tanaka N (2011) Hybridisation in a tropical seagrass genus, Halodule (Cymodoceaceae), inferred from plastid and nuclear DNA phylogenies. Telopea 13:219–231CrossRefGoogle Scholar
  27. Kato Y, Aioi K, Omori Y, Takahata N, Satta Y (2003) Phylogenetic analyses of Zostera species based on rbcL and matK nucleotide sequences: implications for the origin and diversification of seagrasses in Japanese waters. Genes Genet Syst 78:329–342PubMedCrossRefGoogle Scholar
  28. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2:e508PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G et al (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA 105:2923–2928PubMedPubMedCentralCrossRefGoogle Scholar
  30. Les D, Philbrick CT (1993) Studies of hybridization and chromosome number variation in aquatic angiosperms: evolutionary implications. Aquat Bot 44:181–228CrossRefGoogle Scholar
  31. Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae. II: evolution of marine angiosperms (‘seagrasses’) and hydrophily. Syst Bot 22:443–463CrossRefGoogle Scholar
  32. Les DH, Moody ML, Jacobs SWL, Bayer RJ (2002) Systematics of seagrasses (Zosteraceae) in Australia and New Zealand. Syst Bot 27:468–484Google Scholar
  33. Lucas C, Thangaradjou T, Papenbrock J (2012) Development of a DNA barcoding system for seagrasses: successful but not simple. PLoS ONE 7:e29987PubMedPubMedCentralCrossRefGoogle Scholar
  34. Maddison WP, Maddison DR (2008) Mesquite: a modular system for evolutionary analysis. Version 2.5. http://mesquiteproject.org
  35. Mathews S, Tsai RC, Kellogg EA (2000) Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene phytochrome B. Am J Bot 87:96–107PubMedCrossRefGoogle Scholar
  36. McGlathery KJ, Sundbäck K, Anderson IC (2007) Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar Ecol Prog Ser 348:1–18CrossRefGoogle Scholar
  37. Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728PubMedCrossRefGoogle Scholar
  38. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422PubMedPubMedCentralCrossRefGoogle Scholar
  39. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DCGoogle Scholar
  40. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on Earth and in the ocean? PLoS Biol 9:e1001127PubMedPubMedCentralCrossRefGoogle Scholar
  41. Orth RJ, Curruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL et al (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996CrossRefGoogle Scholar
  42. Packer L, Gibbs J, Sheffield C, Hanner R (2009) DNA barcoding and the mediocrity of morphology. Mol Ecol Resour 9:42–50Google Scholar
  43. Papadopoulou A, Chesters D, Coronado I, De la Cadena G, Cardoso A, Reyes JC et al (2015) Automated DNA-based plant identification for large-scale biodiversity assessment. Mol Ecol Resour 15:136–152PubMedCrossRefGoogle Scholar
  44. Pentinsaari M, Mutanen M, Kaila L (2014) Cryptic diversity and signs of mitochondrial introgression in the Agrilusviridis species complex (Coleoptera: Buprestidae). Eur J Entomol 111:475–486Google Scholar
  45. Pettengill JB, Neel MC (2010) An evaluation of candidate plant DNA barcodes and assignment methods in diagnosing 29 species in the genus Agalinis (Orobanchaceae). Am J Bot 97:1381–1406CrossRefGoogle Scholar
  46. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  47. Radulovici AE, Archambault P, Dufresne F (2010) DNA barcodes for marine biodiversity: moving fast forward? Diversity. 2:450–472CrossRefGoogle Scholar
  48. Rieseberg LH, Choi HC, Ham D (1991) Differential cytoplasmic versus nuclear introgression in Helianthus. J Hered 82:489–493Google Scholar
  49. Roy S, Tyagi A, Shulka V, Kumar A, Singh UM, Chaudhary LB et al (2010) Universal plant DNA barcode loci may not work in complex groups: a case study with Indian Berberis species. PLoS ONE 5:e13674PubMedPubMedCentralCrossRefGoogle Scholar
  50. Simmons MP, Clevinger CC, Savolainen V, Archer PH, Mathews S, Doyle JJ (2001) Phylogeny of the Celastraceae inferred from phytochrome B gene sequences and morphology. Am J Bot 88:313–325PubMedCrossRefGoogle Scholar
  51. Smith MA, Fisher BL, Hebert PDN (2005) DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Phil Trans R Soc B 360:1825–1834PubMedPubMedCentralCrossRefGoogle Scholar
  52. Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–1490PubMedCrossRefGoogle Scholar
  53. Tanaka N, Kuo J, Omori Y, Nakaoka M, Aioi K (2003) Phylogenetic relationships in the generaZostera and Heterozostera (Zosteraceae) based on matK sequence data. J Plant Res 116:273–279PubMedCrossRefGoogle Scholar
  54. Tomlinson PB, Posluszny U (2001) Generic limits in the seagrass family Zosteraceae. Taxon 50:429–437CrossRefGoogle Scholar
  55. Trivedi S, Aloufi AA, Ansari AA, Ghosh SK (2016) Role of DNA barcoding in marine biodiversity assessment and conservation: an update. Saudi J Biol Sci. doi: 10.1016/j.sjbs.2015.01.001 PubMedGoogle Scholar
  56. Uchimura M, Faye EJ, Shimada S, Inoue T, Nakamura Y (2008) A reassessment of Halophila species (Hydrocharitaceae) diversity with special reference to Japanese representatives. Bot Mar 51:258–268CrossRefGoogle Scholar
  57. van der Bank H, Greenfield R (2015) A pioneer survey and DNA barcoding of some commonly found gastropod molluscs on Robben Island. ZooKeys 481:15–23PubMedCrossRefGoogle Scholar
  58. Verhoeven JTA (1979) The ecology of Ruppia dominated communities in western Europe. I. Distribution of Ruppia representatives in relation to their autecology. Aquat Bot 6:197–268CrossRefGoogle Scholar
  59. Wang W, Wu Y, Yan Y, Ermakova M, Kerstetter R, Messing J (2010) DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biol 10:205PubMedPubMedCentralCrossRefGoogle Scholar
  60. Waycott M, Freshwater DW, York RA, Calladine A, Kenworthy WJ (2002) Evolutionary trends in the seagrass genus Halophila (thouars): Insights from molecular phylogeny. Bull Mar Sci 71:1299–1308Google Scholar
  61. Waycott M, Duarte CM, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S et al (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  2. 2.Department of Environmental ScienceUniversity of South AfricaFloridaSouth Africa

Personalised recommendations