Advertisement

Reversing the Polarity with Emoticons

  • Phoey Lee TehEmail author
  • Paul Rayson
  • Irina Pak
  • Scott Piao
  • Seow Mei Yeng
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9612)

Abstract

Technology advancement in social media software allows users to include elements of visual communication in textual settings. Emoticons are widely used as visual representations of emotion and body expressions. However, the assignment of values to the “emoticons” in current sentiment analysis tools is still at a very early stage. This paper presents our experiments in which we study the impact of positive and negative emoticons on the classifications by fifteen different sentiment tools. The “smiley” :) and the “sad” emoticon :( and raw-text are compared to verify the degrees of sentiment polarity levels. Questionnaires were used to collect human ratings of the positive and negative values of a set of sample comments that end with these emoticons. Our results show that emoticons used in sentences are able to reverse the polarity of their true sentiment values.

Keywords

Sentiment Emoticons Polarity Emotion Social media 

References

  1. 1.
    Kim, J., Lee, M.: Pictogram generator from Korean sentences using emoticon and saliency map. In: HAI 2015 Proceedings of the 3rd International Conference on Human-Agent Interaction, pp. 259–262. ACM, New York (2015). ©2015Google Scholar
  2. 2.
    Zhang, L., Pei, S., Deng, L., Han, Y., Zhao, J., Hong, F.: Microblog sentiment analysis based on emoticon networks model. In: Proceedings of the Fifth International Conference on Internet Multimedia Computing and Service - ICIMCS 2013, pp. 134–138. ACM, New York (2013). ©2013Google Scholar
  3. 3.
    Yamamoto, Y.: Role of emoticons for multidimensional sentiment analysis of Twitter. In: The 14th IIWAS, pp. 107–115. ACM, New York (2013). ©2014Google Scholar
  4. 4.
    Derks, D., Bos, A.E.R., Von Grumbkow, J.: Emoticons and social interaction on the internet: the importance of social context. Comput. Hum. Behav. 23(1), 842–849 (2007)CrossRefGoogle Scholar
  5. 5.
    Ted, T., Wu, L., Lu, H., Tao, Y.: Computers in human behavior the effect of emoticons in simplex and complex task-oriented communication: an empirical study of instant messaging. Comput. Hum. Behav. 26(5), 889–895 (2010)CrossRefGoogle Scholar
  6. 6.
    Garrison, A., Remley, D., Thomas, P., Wierszewski, E.: Conventional faces: emoticons in instant messaging discourse. Comput. Compos. 28(2), 112–125 (2011)CrossRefGoogle Scholar
  7. 7.
    Tossell, C.C., Kortum, P., Shepard, C., Barg-Walkow, L.H., Rahmati, A., Zhong, L.: A longitudinal study of emoticon use in text messaging from smartphones. Comput. Hum. Behav. 28(2), 659–663 (2012)CrossRefGoogle Scholar
  8. 8.
    Reyes, A., Rosso, P.: On the difficulty of automatically detecting irony: beyond a simple case of negation. Knowl. Inf. Syst. 40, 595–614 (2014)CrossRefGoogle Scholar
  9. 9.
    Teh, P.L., Rayson, P., Piao, S., Pak, I.: Sentiment analysis tools should take account of the number of exclamation marks!!! In: The 17th IIWAS, pp. 4–9. ACM, New York (2015). ©2015Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Phoey Lee Teh
    • 1
    Email author
  • Paul Rayson
    • 2
  • Irina Pak
    • 1
  • Scott Piao
    • 2
  • Seow Mei Yeng
    • 1
  1. 1.Department of Computing and Information SystemsSunway UniversityBandar SunwayMalaysia
  2. 2.School of Computing and CommunicationsLancaster UniversityLancasterUK

Personalised recommendations