Exploiting Semantic Annotation of Content with Linked Open Data (LoD) to Improve Searching Performance in Web Repositories of Multi-disciplinary Research Data

Part of the Communications in Computer and Information Science book series (CCIS, volume 573)


Searching for relevant information in multi-disciplinary repositories of scientific research data is becoming a challenge for research communities such as the Social Sciences. Researchers use the available keywords-based online search, which often fall short of meeting the desired search results given the known issues of content heterogeneity, volume of data and terminological obsolescence. This leads to a number of problems including insufficient content exposure, unsatisfied researchers and above all dwindling confidence in such repositories of invaluable knowledge. In this paper, we explore the appropriateness of alternative searching based on Linked Open Data (LoD)-based semantic annotation and indexing in online repositories such as the ReStore repository (ReStore repository is an online service hosting and maintaining web resources containing data about multidisciplinary research in Social Sciences. Available at http://www.restore.ac.uk.). We explore websites content annotations using LoD to generate contemporary semantic annotations. We investigate if we can improve accuracy and relevance in search results affected by concepts and terms obsolescence in repositories of scientific content.


Search Result Average Precision Mean Average Precision Semantic Annotation Link Open Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fernandez, M., et al.: Semantically enhanced information retrieval: an ontology-based approach. Web Semantics: Science, Services and Agents on the World Wide Web 9(4), 434–452 (2011)CrossRefGoogle Scholar
  2. 2.
    Wu, P.H., Heok, A.K., Tamsir, I.P.: Annotating the web archives – an exploration of web archives cataloging and semantic web. In: Sugimoto, S., Hunter, J., Rauber, A., Morishima, A. (eds.) ICADL 2006. LNCS, vol. 4312, pp. 12–21. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Khan, A., Martin, D., Tiropanis, T.: Using semantic indexing to improve searching performance in web archives. In: International Journal on Advances in Internet Technology, Seville, Spain, pp. 1–4 (2012)Google Scholar
  4. 4.
    Riggs, F.W., Interconcept report: a new paradigm for solving the terminology problems of the social sciences, UNESCO, vol. 44 (1981)Google Scholar
  5. 5.
    Snow, R., et al.: Cheap and fast—but is it good? Evaluating non-expert annotations for natural language tasks. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (2008). Association for Computational LinguisticsGoogle Scholar
  6. 6.
    Royo, J.A., et al.: Searching the web: from keywords to semantic queries. In: Third International Conference on Information Technology and Applications, ICITA 2005 (2005)Google Scholar
  7. 7.
    Zervanou, K., et al.: Enrichment and structuring of archival description metadata. In: ACL HLT 2011, p. 44 (2011)Google Scholar
  8. 8.
    Benjamins, R., et al.: The six challenges of the semantic web (2002)Google Scholar
  9. 9.
    Yang, C., Yang, K.-C., Yuan, H.-C.: Improving the search process through ontology-based adaptive semantic search. The Electronic Library 25(2), 234–248 (2007)CrossRefGoogle Scholar
  10. 10.
    Georgiev, G., et al.: Adaptive semantic publishing. In: WaSABi@ ISWC (2013)Google Scholar
  11. 11.
    Damova, M., et al.: Mapping the central LOD ontologies to PROTON upper-level ontology. In: Proceedings of the Fifth International Workshop on Ontology Matching (2010)Google Scholar
  12. 12.
    Shabanzadeh, M., Nematbakhsh, M.A., Nematbakhsh, N.: A semantic based query expansion to search. In: 2010 International Conference on Intelligent Control and Information Processing (ICICIP) (2010)Google Scholar
  13. 13.
    Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D., Goranov, M.: KIM – semantic annotation platform. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 834–849. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    De Virgilio, R.: RDFa based annotation of web pages through keyphrases extraction. In: Meersman, R., et al. (eds.) OTM 2011, Part II. LNCS, vol. 7045, pp. 644–661. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Bai, R., Wang, X.: A semantic information retrieval system based on KIM. In: 2010 International Conference on E-Health Networking, Digital Ecosystems and Technologies (EDT) (2010)Google Scholar
  16. 16.
    Rusu, D., Fortuna, B., Mladenic, D.: Automatically annotating text with linked open data. In: LDOW (2011)Google Scholar
  17. 17.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. In: Semantic Services, Interoperability and Web Applications: Emerging Concepts, pp. 205–227 (2009)Google Scholar
  18. 18.
    Gangemi, A.: A comparison of knowledge extraction tools for the semantic web. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 351–366. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Rizzo, G., et al.: NERD meets NIF: lifting NLP extraction results to the linked data cloud. In: LDOW, vol. 937 (2012)Google Scholar
  20. 20.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706. ACM, Banff, Alberta, Canada (2007)Google Scholar
  21. 21.
    Bollacker, K., et al.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of data, pp. 1247–1250. ACM, Vancouver, Canada (2008)Google Scholar
  22. 22.
    Kiryakov, A., et al.: Semantic annotation, indexing, and retrieval. J. Web Semant. 2(1), 49–79 (2004). Elsevier’sCrossRefGoogle Scholar
  23. 23.
    Mendes, P.N., et al.: DBpedia spotlight: shedding light on the web of documents. In: Proceedings of the 7th International Conference on Semantic Systems, ACM (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Arshad Khan
    • 1
  • Thanassis Tiropanis
    • 1
  • David Martin
    • 2
  1. 1.ECS, University of SouthamptonSouthamptonUK
  2. 2.Geography and EnvironmentUniversity of SouthamptonSouthamptonUK

Personalised recommendations