Data Science for Massive Networks

  • Anton KocheturovEmail author
  • Panos M. Pardalos
Part of the Communications in Computer and Information Science book series (CCIS, volume 573)


In this chapter we attempt to briefly describe a history of massive networks, their place in modern life, and discuss open problems related to them. We start with giving a historical overview indicating the most influential milestones in the development of networks. Then we consider how real-life massive datasets can be represented in terms of networks describing some examples and summarizing properties of such networks. We also discuss cases of modeling real-life massive networks. In addition, we give some examples of how to optimize in massive networks and in which areas we can apply these techniques. We conclude by discussing open problems of massive networks.


Massive data sets Networks Small-world Power-law Human brain networks Market graphs Call graph Robustness Optimization Cliques Independent sets Minimum spanning trees 



This work is partially supported by the Laboratory of Algorithms and Technologies for Network Analysis, National Research University Higher School of Economics, Nizhny Novgorod, Russia.


  1. 1.
    Abello, J., Pardalos, P.M., Resende, M.: On maximum clique problems in very large graphs. In: Abello, J.M., Vitter, J.S. (eds.) External Memory Algorithms. DIMACS Series, vol. 50, pp. 119–130. AMS, Providence (1999)Google Scholar
  2. 2.
    Abello, J., Pardalos, P.M., Resende, M.G.S.: Handbook of Massive Data Sets. Kluwer Academic Publishers, Dordrecht (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs. Exp. Math. 10, 53–66 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aiello, W., Chung, F., Lu, L.: Random evolution in massive graphs. In: Abello, J., Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Massive Data Sets, pp. 97–122. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  5. 5.
    Albert, R., Jeong, H., Barabási, A.-L.: Internet: diameter of the world-wide web. Nature 401, 130–131 (1999)CrossRefGoogle Scholar
  6. 6.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Arulsevan, A., Commander, C.W., Elefteriadou, L., Pardalos, P.M.: Detecting critical nodes in sparse graphs. Comput. Oper. Res. 36, 2193–2200 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bansal, S., Khandelwal, S., Meyers, L.A.: Exploring biological network structure with clustered random networks. BMC Bioinform. 10(405) (2009)Google Scholar
  9. 9.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Barabási, A.-L., Albert, R., Jeong, H.: Scale-free characteristics of random networks: the topology of the world-wide web. Phys. A: Stat. Mech. Appl. 281(14), 9–77 (2000)Google Scholar
  11. 11.
    Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.M.: Improvements to MCS algorithm for the maximum clique problem. J. Comb. Optim. 27, 397–416 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bautin, G., Kalyagin, V., Koldanov, A., Koldanov, P., Pardalos, P.M.: Simple measure of similarity for the market graph construction. Comput. Manag. Sci. 10, 105–124 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Boginski, V., Butenko, S., Pardalos, P.M.: On structural properties of the market graph. In: Innovations in Financial and Economic Networks. Edward Elgar Publishers (2003)Google Scholar
  15. 15.
    Boginski, V., Butenko, S., Pardalos, P.M.: Modeling and optimization in massive graphs. In: Pardalos, P.M., Wolkowicz, H. (eds.) Novel Approaches to Hard Discrete Optimization, pp. 17–39. AMS, Providence (2003)CrossRefGoogle Scholar
  16. 16.
    Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks. Comput. Stat. Data Anal. 48, 431–443 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bollobás, B.: Extremal Graph Theory. Academic Press, New York (1978)zbMATHGoogle Scholar
  18. 18.
    Bollobás, B.: Random Graphs. Academic Press, New York (1985)zbMATHGoogle Scholar
  19. 19.
    Bollobás, B., Riordan, O.M., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Algorithms 18(3), 279–290 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Bollobás, B., Riordan, M.: Mathematical results on scale-free random graphs. In: Bornholdt, S., Schluster, H.G. (eds.) Handbook of Graphs and Networks: From the Genome to the Internet, pp. 1–34. Wiley-VCH, London (2003)Google Scholar
  21. 21.
    Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academic Publishers, Dordrecht (1999)CrossRefGoogle Scholar
  22. 22.
    Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Netw. 33, 309–320 (2000)CrossRefGoogle Scholar
  23. 23.
    Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network vulnerability: hardness and approximation. IEEE/ACM Trans. Netw. 20(2), 609–619l (2012)CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Hayes, B.: Graph theory in practice. Am. Sci. 88, 9–13 (2000)CrossRefGoogle Scholar
  26. 26.
    Iasemidis, L., Shiau, D., Sackellares, J., Pardalos, P.M.: Quadratic binary programming and dynamic system approach to determine the predictability of epileptic seizures. J. Comb. Optim. 5, 9–26 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Iasemidis, L., Sackellares, J., Shiau, D., Chaovalitwongse, W., Carney, P., Principe, J., Yang, M., Yatsenko, V., Roper, S., Pardalos, P.M.: Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program. 101(2), 365–385 (2004)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Kocheturov, A., Batsyn, M., Pardalos, P.M.: Dynamics of cluster structures in a financial market network. Phys. A: Stat. Mech. Appl. 413, 523–533 (2014)CrossRefGoogle Scholar
  29. 29.
    Korenkevych, D., Chien, J.-H., Zhang, J., Shiau, D.-S., Sackellares, C., Pardalos, P.M.: Small world networks in computational neuroscience. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 3057–3088. Springer, New York (2013)CrossRefGoogle Scholar
  30. 30.
    Kumar, S.R., Raghavan, P., Rajagopalan, S., Tompkins, A.: Extracting large-scale knowledge bases from the web. In: Proceedings of the 25th International Conference on VLDB, pp. 639–650. Morgan Kaufmann Publishers (1999)Google Scholar
  31. 31.
    Kumar, S.R., Raghavan, P., Rajagopalan, S., Tompkins, A.: Trawling the web for emerging cyber communities. Comput. Netw. 31(11–16), 1481–1493 (1999)CrossRefGoogle Scholar
  32. 32.
    Kumar, S.R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tompkins, A., Upfal, E.: Stochastic models for the web graph. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 57–65. IEEE Computer Society (2000)Google Scholar
  33. 33.
    Mantegna, R.N.: Hierarchical structure in financial markets. Eur. Phys. J. B 11, 193–197 (1999)CrossRefGoogle Scholar
  34. 34.
    Milgram, S.: The small-world problem. Psychol. Today 1, 61–67 (1967)Google Scholar
  35. 35.
    Murre, J.M.J., Sturdy, D.P.F.: The connectivity of the brain: multi-level quantitative analysis. Biol. Cybern. 73(6), 529–545 (1995)CrossRefzbMATHGoogle Scholar
  36. 36.
    Newman, M., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)CrossRefGoogle Scholar
  37. 37.
    Ostroumova, L., Ryabchenko, A., Samosvat, E.: Generalized preferential attachment: tunable power-law degree distribution and clustering coefficient. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 185–202. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  38. 38.
    Serrano, M.A., Boguñá, M.: Tuning clustering in random networks with arbitrary degree distributions. Phys. Rev. E 72(3), 036133 (2005)CrossRefGoogle Scholar
  39. 39.
    Skidmore, F., Korenkevych, D., Liu, Y., He, G., Bullmore, E., Pardalos, P.M.: Connectivity brain networks based on wavelet correlation analysis in Parkinson fMRI data. Neurosci. Lett. 499, 47–51 (2011)CrossRefGoogle Scholar
  40. 40.
    Shangin, R.E., Pardalos, P.M.: Heuristics for minimum spanning k-tree problem. Procedia comput. sci. 31, 1074–1083 (2014)CrossRefGoogle Scholar
  41. 41.
    Thai, M., Pardalos, P.M.: Handbook of Optimization in Complex Networks: Theory and Applications. Springer Optimization and Its Applications. Springer, New York (2011)Google Scholar
  42. 42.
    Thai, M., Pardalos, P.M.: Handbook of Optimization in Complex Networks: Communication and Social Networks. Springer Optimization and Its Applications. Springer, New York (2011)zbMATHGoogle Scholar
  43. 43.
    Tumminello, M., Aste, T., Matteo, T., Mantegna, R.N.: A tool for filtering information in complex systems. PNAS 102, 10421–10426 (2005)CrossRefGoogle Scholar
  44. 44.
    Volz, E.: Random networks with tunable degree distribution and clustering. Phys. Rev. E 70(5), 056115 (2004)CrossRefGoogle Scholar
  45. 45.
    Walteros, J.L., Pardalos, P.M.: A decomposition approach for solving critical clique detection problems. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 393–404. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  46. 46.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  47. 47.
    Wu, B.Y., Chao, K.-M.: Spanning Trees and Optimization Problems. Taylor & Francis Group, London (2004)CrossRefzbMATHGoogle Scholar
  48. 48.
    Zhang, J., Xanthopoulos, P., Liu, C., Bearden, S., Uthman, B.M., Pardalos, P.M.: Real-time differentiation of nonconvulsive status epilepticus from other encephalopathies using quantitative EEG analysis: a pilot study. Epilepsia 51(2), 243–250 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Center for Applied OptimizationUniversity of FloridaGainesvilleUSA
  2. 2.Laboratory of Algorithms and Technologies for Network AnalysisNational Research University Higher School of EconomicsNizhny NovgorodRussian Federation

Personalised recommendations