A Tutorial on Leveraging Knowledge Graphs for Web Search

Chapter
Part of the Communications in Computer and Information Science book series (CCIS, volume 573)

Abstract

Knowledge Graphs are large repositories of structured information about entities like persons, locations, and organizations and their relations. Modern Web search engines leverage such background Knowledge Graphs to create rich search engine result pages for entity-centric search queries.

In this document we provide an introduction to Knowledge Graphs and their application to search-related problems. We present techniques to search for entities instead of documents as answer to a search query. Finally we present human computation techniques to build hybrid human-machine systems to solve entity-oriented search tasks making use of Knowledge Graphs.

References

  1. 1.
    Balog, K., Fang, Y., de Rijke, M., Serdyukov, P., Si, L.: Expertise retrieval. Found. Trends Inf. Retrieval 6(2–3), 127–256 (2012)CrossRefGoogle Scholar
  2. 2.
    Bernstein, M.S., Teevan, J., Dumais, S., Liebling, D., Horvitz, E.: Direct answers for search queries in the long tail. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2012, pp. 237–246. ACM, New York (2012)Google Scholar
  3. 3.
    Blanco, R., Cambazoglu, B.B., Mika, P., Torzec, N.: Entity recommendations in web search. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 33–48. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Blanco, R., Mika, P., Vigna, S.: Effective and efficient entity search in RDF data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 83–97. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Blanco, R., Ottaviano, G., Meij, E.: Fast and space-efficient entity linking for queries. In: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, WSDM, Shanghai, China, 2–6 February 2015, pp. 179–188 (2015)Google Scholar
  6. 6.
    Bozzon, A., Brambilla, M., Ceri, S., Silvestri, M., Vesci, G.: Choosing the right crowd: expert finding in social networks. In: Proceedings of the 16th International Conference on Extending Database Technology, EDBT 2013, pp. 637–648. ACM, New York (2013)Google Scholar
  7. 7.
    Demartini, G.: Hybrid human-machine information systems: challenges and opportunities. Comput. Netw. 90, 5–13 (2015)CrossRefGoogle Scholar
  8. 8.
    Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: ZenCrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 469–478. ACM, New York (2012)Google Scholar
  9. 9.
    Demartini, G., Difallah, D.E., Cudré-Mauroux, P.: Large-scale linked data integration using probabilistic reasoning and crowdsourcing. VLDB J. 22(5), 665–687 (2013)CrossRefGoogle Scholar
  10. 10.
    Demartini, G., Firan, C.S., Iofciu, T., Krestel, R., Nejdl, W.: Why finding entities in wikipedia is difficult, sometimes. Inf. Retr. 13(5), 534–567 (2010)CrossRefGoogle Scholar
  11. 11.
    Demartini, G., Missen, M.M.S., Blanco, R., Zaragoza, H.: TAER.: time-aware entity retrieval-exploiting the past to find relevant entities in news articles. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 1517–1520. ACM, New York (2010)Google Scholar
  12. 12.
    Demartini, G., Trushkowsky, B., Kraska, T., Franklin, M.J.: CrowdQ: crowdsourced query understanding. In: CIDR, Sixth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, 6–9 January 2013, Online Proceedings (2013)Google Scholar
  13. 13.
    Difallah, D.E., Catasta, M., Demartini, G., Ipeirotis, P.G., Cudré-Mauroux, P.: The dynamics of micro-task crowdsourcing: the case of Amazon MTurk. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015, pp. 238–247. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2015)Google Scholar
  14. 14.
    Difallah, D.E., Demartini, G., Cudré-Mauroux, P.: Pick-a-crowd: tell me what you like, and i’ll tell you what to do. In: Proceedings of the 22nd International Conference on World Wide Web, WWW 2013, pp. 367–374. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland (2013)Google Scholar
  15. 15.
    Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 601–610. ACM, New York (2014)Google Scholar
  16. 16.
    Elmeleegy, H., Madhavan, J., Halevy, A.Y.: Harvesting relational tables from lists on the web. VLDB J. 20(2), 209–226 (2011)CrossRefGoogle Scholar
  17. 17.
    Gadiraju, U., Kawase, R., Dietze, S., Demartini, G.: Understanding malicious behavior in crowdsourcing platforms: the case of online surveys. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015, pp. 1631–1640. ACM, New York (2015)Google Scholar
  18. 18.
    Ipeirotis, P.G., Gabrilovich, E.: Quizz: targeted crowdsourcing with a billion (potential) users. In: Proceedings of the 23rd International Conference on World Wide Web, WWW 2014, pp. 143–154. ACM, New York (2014)Google Scholar
  19. 19.
    Li, C., Weng, J., He, Q., Yao, Y., Datta, A., Sun, A., Lee, B.-S.: TwiNER: named entity recognition in targeted Twitter stream. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2012, pp. 721–730. ACM, New York (2012)Google Scholar
  20. 20.
    Lin, T., Pantel, P., Gamon, M., Kannan, A., Fuxman, A.: Active objects: actions for entity-centric search. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 589–598. ACM, New York (2012)Google Scholar
  21. 21.
    Macdonald, C., Ounis, I.: Voting for candidates: adapting data fusion techniques for an expert search task. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, CIKM 2006, pp. 387–396. ACM, New York (2006)Google Scholar
  22. 22.
    Matuszek, C., Cabral, J., Witbrock, M.J., DeOliveira, J.: An introduction to the syntax, content of Cyc. In: AAAI Spring Symposium: Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering, pp. 44–49 (2006)Google Scholar
  23. 23.
    Mortensen, J., Musen, M.A., Noy, N.F.: Crowdsourcing the verification of relationships in biomedical ontologies. In: AMIA, American Medical Informatics Association Annual Symposium, Washington, DC, USA, 16–20 November 2013 (2013)Google Scholar
  24. 24.
    Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: Proceedings of the 19th International Conference on World Wide Web, WWW 2010, pp. 771–780. ACM, New York (2010)Google Scholar
  25. 25.
    Robertson, S.E., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retrieval 3(4), 333–389 (2009)CrossRefGoogle Scholar
  26. 26.
    Sarasua, C., Simperl, E., Noy, N.F.: CrowdMap: crowdsourcing ontology alignment with microtasks. In: Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E., Cudré-Mauroux, P. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 525–541. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Smirnova, E., Balog, K.: A user-oriented model for expert finding. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 580–592. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  28. 28.
    Teevan, J., Collins-Thompson, K., White, R.W., Dumais, S.: Slow search. Commun. ACM 57(8), 36–38 (2014)CrossRefGoogle Scholar
  29. 29.
    Tonon, A., Catasta, M., Demartini, G., Cudré-Mauroux, P., Aberer, K.: TRank: ranking entity types using the web of data. In: Alani, H., et al. (eds.) ISWC 2013, Part I. LNCS, vol. 8218, pp. 640–656. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  30. 30.
    Tonon, A., Demartini, G., Cudré-Mauroux, P.: Combining inverted indices and structured search for Ad-hoc object retrieval. In: The 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2012, Portland, OR, USA, 12–16 August 2012, pp. 125–134 (2012)Google Scholar
  31. 31.
    Zhiltsov, N., Kotov, A., Nikolaev, F.: Fielded sequential dependence model for Ad-hoc entity retrieval in the web of data. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2015, pp. 253–262. ACM, New York (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of SheffieldSheffieldUK

Personalised recommendations